
A Modular, Reactive Approach to
Digital Education

by
Ben Follington

School of Information Technology and Electrical Engineering,
The University of Queensland.

Submitted for the degree of
Bachelor of Engineering

in the field of Software Engineering

2015

ii

iii

74 Jubilee Terrace
Bardon, 4065

Tel. 0438 168 458

November 9, 2015

Prof Paul Strooper
Head of School
School of Information Technology and Electrical Engineering
The University of Queensland
St Lucia, Q 4072

Dear Professor Strooper,

In accordance with the requirements of the degree of Bachelor of Engineering in the
division of Software Engineering, I present the following thesis entitled “A Modular,
Reactive Approach to Digital Education”. This work was performed under the
supervision of Dr. Jim Steel.

I declare that the work submitted in this thesis is my own, except as acknowledged
in the text and footnotes, and has not been previously submitted for a degree at The
University of Queensland or any other institution.

Yours sincerely,

Ben Follington.

Contents

1 Introduction 1

1.1 Project Purpose . 1

2 Related Work 3

2.1 Digital Education Theory . 3

2.1.1 Connectivism . 3

2.1.2 Learning Objects . 4

2.1.3 Reusable Learning Objects . 5

2.2 Recommendation Systems . 5

2.2.1 Content Filtering Recommendation 6

2.2.2 Collaborative Filtering Recommendation 6

2.2.3 Hybrid Recommendation . 7

2.3 Graph Theory . 7

2.4 Existing Approaches to Digital Learning 8

2.4.1 University Approaches . 8

2.4.2 Tutorials . 9

2.4.3 Massively Open Online Courses 10

2.5 Existing Approaches to Modular Learning 11

2.5.1 Khan Academy . 11

2.5.2 Treehouse . 12

3 Project Design Overview 13

3.1 Key Features . 15

3.2 System Overview . 15

iv

CONTENTS v

4 System Implementation 16

4.1 Technology Stack . 17

4.1.1 Back-end . 17

4.1.1.1 Database . 17

4.1.1.2 Application . 18

4.1.2 Front-end . 19

4.1.2.1 React . 20

4.1.2.2 Flux . 21

4.1.2.3 SASS . 22

4.1.2.4 Build System . 23

4.2 Domain Model of System . 24

4.2.1 Account . 24

4.2.2 Project . 25

4.2.2.1 Metadata . 25

4.2.3 Topic . 25

4.2.4 Learning Module . 26

4.2.4.1 Comment . 26

4.2.5 Content Block . 26

4.2.6 Feedback Data . 27

4.3 Interface . 27

4.3.1 User Interface Flow and Functionality 28

4.3.1.1 Tasks . 28

4.3.1.2 Intended User Interface Usage 28

4.3.1.3 Login Form . 30

4.3.1.4 Registration Form 31

4.3.1.5 User Dashboard . 32

4.3.1.6 Project Creation . 33

4.3.1.7 Project Summary . 35

4.3.1.8 Content Consumption 37

4.3.1.9 Content Editor . 39

vi CONTENTS

4.3.2 Design Patterns . 41

4.3.2.1 Message Bubble . 41

4.3.2.2 Input Fields . 41

4.3.2.3 Topic Cloud . 42

4.3.2.4 Inline Commenting 42

4.3.2.5 Avatar and User Identification 43

4.3.2.6 Content Types . 44

4.3.2.7 Recommendations 45

4.3.2.8 Parameterisation Indicator 46

4.3.2.9 External Content 46

4.3.3 Implementation . 47

4.3.3.1 Flux Implementation 49

4.3.3.2 Content Editor Implementation 52

4.4 Content writing . 52

4.5 Recommendation System . 53

4.5.1 Content Driven Aspects . 54

4.5.2 Collaboration Driven Aspects 55

4.5.3 Combination and Interpretation 56

4.5.3.1 Algorithm . 56

4.6 Parameterisation Functionality . 57

5 Verification and Validation 61

5.1 Code Testing . 61

5.2 User testing . 62

5.2.1 Results and Observations . 63

5.2.1.1 Onboarding Process 63

5.2.1.2 General Interface . 65

5.2.1.3 Recommendations 66

5.2.1.4 Content . 67

CONTENTS vii

6 Conclusion, Perspectives and Future Work 68

6.1 Limitations . 70

6.1.1 Caching of Results . 70

6.1.2 Worker Queue . 70

6.2 Future Research & Potential Improvements 70

6.2.1 Insight Into Student Behaviour 70

6.2.2 Collaborative Authoring . 71

6.2.3 Deep Collaboration . 71

6.2.4 Assessment and Feedback . 71

6.2.5 Live Collaboration . 72

6.2.6 Recommendation System . 72

Appendices 74

A Recommendation Algorithm Psuedocode 75

B User Testing Question Sheet 78

C User Testing Information and Consent 80

Bibliography 84

viii CONTENTS

Chapter 1

Introduction

In 2015, educational content is more widely available than ever before. This is in no
small part due to the rapid growth and spread of online, digital education. Digital
education employs a non-traditional educational paradigm, focused on self-directed
and self-motivated learning. There are many approaches to digital education; from
University created materials, to online schools, to simple tutorials.

Digital education facilitates new learning structures, wider availability and greater
financial viability. It has been shown to be at least as effective as in-person learning
[1, 2]. However, up until this point, most digital learning material has been created
to cater to the widest audience, with limited consideration for the specific needs of
individual students. The content from these materials is also typically difficult to
reuse, leading to a large time investment to produce new or updated material.

With current education distribution models, it is now possible to build modular,
reusable and intelligent content, and to tailor the learning experience to each
individual student. Content such as this would also reduce the time investment
required to produce educational content, allowing educators to produce a larger
quantity, of higher quality material.

1.1 Project Purpose

This project aims to produce a platform for the creation and consumption of modular
learning materials. This will enable rapid production of new lessons and intelligent
lesson plans for students.

1

2 CHAPTER 1. INTRODUCTION

There have been many approaches to a modular format for educational content,
but this is typically accompanied by the loss of structure. This requires students
to formulate their own lesson plan, which in turn can cause both intentional and
subconscious avoidance of difficult concepts, and can be daunting when the student
is presented with a large pool of learning resources. Before a student is familiar with
a field, they cannot make an informed decision on the concepts they wish to learn,
let alone the order in which they wish to learn them.

This project will specifically target intermediate-level computer science students.
Students in this field, at this experience level, typically wish to create their own
projects but find themselves incapable of doing so. This is due to the large number of
concepts required to create full software applications. Students in the field often do
not know what concepts will be required to complete a problem before attempting
to tackle it, and as such are often frustrated when moving into new territory.

The learning platform produced by this project will allow students to bring their
own projects, specify which broad topics they feel are relevant to their project and
have a dynamic, evolving lesson plan created for them as their project develops.

This will allow students to make progress on their project without having to plan
their own learning simultaneously. The potential for students to begin creating full
projects, before they become experts in the relevant concepts, furthers their personal
education and produces higher quality software.

Chapter 2

Related Work

A wealth of previous relevant work exists in the field of digital learning. As educators
attempt to adapt traditional teaching theory to the digital platform, new models
emerge from the content they produce. Specifically, the work related to this project
falls into the following broad categories:

• Digital Education Theory
• Recommendation Systems
• Graph Theory
• Existing Approaches to Digital Learning
• Existing Approaches to Modular Learning

2.1 Digital Education Theory

Since first being pursued as an option, digital learning has been a topic of extensive
research. The adaptation of existing pedagogy theory is not, however, straightforward
and there are many aspects to the process.

2.1.1 Connectivism

Connectivism is a framework to aid in understanding the learning process [3, 4]. It is
centred around the idea that true learning occurs when a student makes a connection
between two ideas they have been introduced to previously [4]. The principles of
connectivism state that learning is a process of connecting nodes in a graph, joining

3

4 CHAPTER 2. RELATED WORK

existing ideas together to forge new ones. According to connectivism, knowledge is
best gained from a diverse set of opinions and sources and the ability to combine
multiple concepts is key to learning. These connections must be maintained and
reinforced to cement knowledge. [3]

The core principles of connectivism, when applied to online learning, are [2, 3]:

1. Autonomy: learners are given control of what to learn, and when to learn it
2. Diversity: peers must be from a sufficiently wide network to avoid all students

arriving at the same conclusions
3. Openness: students must feel included no matter the level of commitment

they have to the course
4. Connectedness & Interactivity: without the ability to connect to other

students, and interact with them, none of the above principles are possible

Connectivism provides a backbone for any online learning, ensuring the students can
extract maximum benefit from the educational content. However, much of the online
material available today from Universities and online learning platforms does not
embrace all of these principles. Specifically, there is a noticeable lack of community
built around University online offerings. There is also a tendency to lean too heavily
on the principle of autonomy, leaving students without direction when presented
with learning resources [4].

2.1.2 Learning Objects

Learning objects are a concept designed to solve a long-standing problem with
educational content: can a piece of educational material be shared between courses,
or institutions? If so, in what context can it be shared? If every university creates
their own course on a topic, countless hours are spent reproducing the same content.
Conversely, shared content reduces time spent adapting and duplicating content
[5]. Learning objects are an approach to creating educational content by drawing
inspiration from computer science [6]. In computer science, reuse and modularity
are two of the core goals of any program architecture. Specifically, object-oriented
programming is highly analogous to the structured learning materials proposed by
the concept of learning objects [6]. Each learning object shares the same prototype,
however they differ in a range of defined attributes.

2.2. RECOMMENDATION SYSTEMS 5

Traditionally, courses are seen as the atomic unit of educational content. However,
learning objects allow us to break courses down into individual lessons that can be
composed to create a course [5, 6]. Each learning object should address only one
learning objective and be able to stand alone, to facilitate reordering and restructuring
of courses.

Learning objects present content authors with a greater challenge than traditional
educational materials, as there is no guarantee that a given piece of content will
appear before or after any other content while being presented to the student. The
concept of prerequisites can be applied to learning objects to help alleviate this
difficulty; however, this decreases the number of possible configurations for the
learning objects.

2.1.3 Reusable Learning Objects

The idea of a reusable learning object takes the primary qualities of a learning
object, and combines them with the concept of complete reusability. Effectively, this
means a reusable learning object must be completely self-contained with no external
references, further increasing the production effort [7]. However, the concept opens
up many possibilities for sharing learning objects. A truly reusable learning object
can be used year after year, by many different courses, and be updated by simply
changing a single source.

Furthermore, as put forward by Downes, reusable learning objects could be organised
into open repositories [6, 8], allowing anyone to draw from open pools of material in
order to put together new courses. This is conceptually very similar to the current
open-source landscape in software engineering, where many modern applications
frameworks are developed from the composition of several other projects. Using this
approach, entire courses targeting varied audiences can be created without authoring
any new content. Under this system, it is the role of a course coordinator to compose
the reusable learning objects into a coherent package.

2.2 Recommendation Systems

As the Internet has grown in size and scope many services and platforms have
shifted their focus from a searchable database to user-focused suggestions [9]. This
promotes a model of discovery rather than search, which many believe to be the
future of the Internet [10]. As the amount of information available to users has grown,

6 CHAPTER 2. RELATED WORK

consumption has become more challenging. Rather than leaving the content selection
to the user, recommendation systems recommend relevant content or products to
users. In practice, this consists of media such a films (Netflix1), music (Spotify2) or
reading material (Amazon3) [11]. These systems are equally applicable to learning
content as there is a large pool of content to draw from, each with a depth of
supplementary metadata.

The software systems designed to perform this task as known as Recommendation
Systems. These are can be broadly categorised into three varieties.

2.2.1 Content Filtering Recommendation

Content-filtered recommendation systems focus on the actual items that are
recommended to users. It is based on the premise that if a user has previously
indicated that they have a preference or dislike for an item, their preferences can
be generalised to similar items [11]. The primary challenge with a content filtered
system is determining how similar two items are.

Typical implementations of content filtering make use of tagging content, derived
metadata, difference algorithms and string matching [11]. The overall goal of any
content-filtered system is to derive a score for how relevant any single item is to any
other single item. This has excellent applicability to learning objects in a learning
system, as each of these follows the same overall structure.

2.2.2 Collaborative Filtering Recommendation

Collaborative filtering is an alternative approach to recommendation that focuses on
user behaviour [11]. This consists of using past user behaviour, of an individual as
well as their peers, to predict future user preferences.

One of the main benefits of a collaborative filtering approach is that the
recommendation system is not tightly coupled to the type of content being
recommended to users [11]. Often, collaborative filtering can produce more accurate
and personalised results over content filtering, but can be more challenging to
implement [9].

1http://netflix.com
2http://spotify.com
3http://amazon.com

2.3. GRAPH THEORY 7

2.2.3 Hybrid Recommendation

By far the most popular approach to recommendation systems however is a hyrbid
approach [9]. This combines both content and collaborative filtered measures into a
unified system. This can be performed as two distinct operations which are later
merged or a combined process.

These are thought to produce the most accurate recommendations due to the large
pool of information they draw from. One of the foremost implementations of a hybrid
recommendation system is the Youtube4 video recommendation service. Youtube
combines both content and collaborative filtered methods to compute both the set
of potential recommendations and their ordering [12].

2.3 Graph Theory

Recommendation-based modular learning is accomplished by taking individual lessons
and “joining” them together with other related modules. This effectively forms a
series of nodes in a network, connected with other nodes that share similar concepts.
This allows the system to be modeled using a graph of the learning network available
to a student.

In computer science and discrete mathematics, a graph is a concept used to model
any set of objects that have relationships with one another. A graph is defined as
a set of vertices (V) and a set of edges (E). Vertices are connected together by
the edges to show relationships between the various points. Graphs can either be
undirected or directed, to represent any relationship between verticies or to indicate
a hierarchy. [13]

Edges of a graph can also be weighted or unweighted, where the weight is defined
a numerical rating assigned to the edge. The weight of an edge may be used to
represent the strength of the relationship between two vertices [13]. This can be used
to model the strength of a recommendation from one learning module to another.

As users follow a string of recommendations, they are traversing the adjacent edges
of a graph and as such their individual path can be modelled using a sub-graph.

4http://youtube.com

8 CHAPTER 2. RELATED WORK

2.4 Existing Approaches to Digital Learning

Digital learning is a broadly defined term, referring to any platform, body or material
pertaining to education that is delivered digitally [14]. There are many varied
approaches to the issue, especially regarding software education.

2.4.1 University Approaches

Universities have thoroughly embraced digital education with many institutions
worldwide offering content online. Allowing students to enroll online allows
Universities to reach far more students than otherwise possible, which aligns closely
with the core goals of any educational body. Typically when a University offers an
online course a digital adaptation of an existing course is created and offered either
in tandem with the on-campus version or entirely separately. There are two common
approaches to the authoring of these courses:

The first is to simply upload lecture materials (recordings, slides) and tutorial
materials, providing limited guidance to online students [15, 2]. This relies on
students managing their own learning and time effectively, which can attract many
students but often results in a low completion rate for a given course.

This approach offers little advantage over the traditional model, and is often less
effective than on-campus education. A course relying on tutor-student connections,
depends heavily on how accessible the tutor is to the student. Hence, the concept
of courses taught both online and on-campus simultaneously was developed. This
however provides little support for students wishing to work solely online, as tutors
remain difficult to reach.

The second is to upload a network of smaller lessons, along with a work-plan for
students to tackle at their own pace [15, 2]. This also relies on a student’s proactivity
and resourcefulness, but gives them clear direction and makes online learners first-class
citizens. This is often accompanied by online discussion between students, via an
online forum or email. This has been referred to as an “uncourse” [2], discarding
much of the existing structure that universities employ.

2.4. EXISTING APPROACHES TO DIGITAL LEARNING 9

Downes [2] and Siemens [4] have been vocal in support of the latter of these two
methodologies. They argue that successful digital education relies on connectivism,
and that the current University approach typically fails to address the connectivist
principles.

2.4.2 Tutorials

Online tutorials have been a popular form of learning since near the beginning of the
Internet. Originating as a way of sharing knowledge that was otherwise unavailable,
tutorials facilitated technical education before educational institutions had embraced
online learning. Often, creators of software tools and frameworks are expected to
produce tutorial material, so that prospective users can easily begin using their tools.
However, if the first-party documentation is lacking, it is typical for third parties to
create tutorials as an unofficial form of documentation.

Most third-party tutorials are created by well-meaning individuals attempting to
explain challenging concepts or approaches to a problem. This typically follows after
the individual has solved the problem through their own effort.

Software tutorials tend to follow a similar structure, beginning with some background
as to why the author has created the content and often an example of what the
final product will be as can be seen in the work of Case and Whittaker [16, 17].
This is followed by a model of the product, explaining the relevant objects and how
they interact. This usually also includes a code foundation the user is expected to
copy down or translate for their project. Any relevant algorithms or mathematical
approaches are outlined next.

High quality tutorials attempt to teach without large amounts of code; however,
many tutorials cannot convey the concept correctly without providing the entire
source code. This can be overwhelming for students, and can often lead to broken
implementations with limited understanding of the content.

It can be difficult for students to determine whether they are prepared to tackle the
material in a tutorial, as there is often no structure or relation between the range
of information available. These tutorials are typically developed in isolation and as
such do not directly follow on from to lead to other tutorials.

10 CHAPTER 2. RELATED WORK

When comparing the tutorial approach to the connectivist principles, there are many
shortcomings. Tutorials provide no diversity in their approach or in their opinion, as
they are created by a single author, and typically incorporate limited discussion.

2.4.3 Massively Open Online Courses

A relatively new phenomenon for digital education are Massively Open Online
Courses, or MOOCs. A MOOC is typically characterised by the combination of
social networking, expertise in the field of study and a collection of freely accessible
resources [18]. The main factor that differentiates MOOCs from other offerings, is
the massive number of students, who self-manage their education experience. Many
MOOCs and MOOC platforms have arisen to cater to the huge audience seeking
education. These range from general platforms such as edX5 and Coursera6, to
specialised “schools” such as Codecademy7.

MOOCs typically place limited expectations on students in terms of time commitment,
participation or prerequisites. They embrace connectivism in almost all aspects,
focusing on generating a feeling of comradery and community.

MOOCs have been shown to be a highly effective learning paradigm, with extensive
evidence in support of them [1, 2]. They have been shown to be especially effective
for part-time students, who would otherwise be unable to dedicate enough time to
understand the content. By making use of new approaches to learning that the
traditional classroom cannot provide, MOOCs target a far wider audience than
previously thought possible for educational content.

Many MOOCs make use of learning objects, in that their lessons are self-contained.
For example, learning on edX is organised into packages such as “Introduction to
Computer Science”, “Programming with C#” and “Introduction to Psychology”
[2]. While these lessons may be conceptually related, they are developed separately.
These lessons hold the potential to become true reusable learning objects, though
they are not organised on any higher level. These modular pieces are expected to be
discovered individually, and combined at the will of the student.

5https://www.edx.org/
6https://www.coursera.org/
7https://www.codecademy.com/

2.5. EXISTING APPROACHES TO MODULAR LEARNING 11

Despite their success and many benefits, MOOCs suffer from the same issues that
plague online education: content duplication and lack of modularity. On edX
alone, “Introduction to Computer Science”, “Introduction to Computer Science and
Programming Using Python” and “Introduction to Computer Programming, Part 1”
[19] cover the same content in a number of different ways. The student must manually
plan their own learning paths through this content, which can be overwhelming if
students are presented with hundreds of courses.

2.5 Existing Approaches to Modular Learning

There are some online “schools” or “academies” that have moved beyond the basic
MOOC model, with novel approaches to content organisation and presentation.
These approaches not only make use of connectivist principles and learning objects,
but integrate the learning objects to form whole “learning tracks”. These tracks
provide guidance for students by directing them to learning objects to explore after
they feel they have sufficiently covered their current topic.

2.5.1 Khan Academy

Khan Academy8 is perhaps the most widespread online learning platform in the world,
with over 10 million past and present students [20]. Khan Academy encompasses
many fields, from Mathematics, Physics and Chemistry, to Biology, Economics and
Computer Science. Content is organised into a many-tiered structure, from fields, to
topics, to modules to individual lessons.

Despite the wealth of knowledge Khan Academy exposes to the world, there is
limited content reuse and even some content duplication between similar fields,
such as Chemistry and Organic Chemistry. The unique aspect of Khan Academy’s
approach is the very fine granularity of content. Students with time constraints on
their learning can still make definite progress due to this granularity. This is in stark
contrast to most other platforms, which generally expect at least an hour of contact
time to tackle a lesson.

8https://www.khanacademy.org/

12 CHAPTER 2. RELATED WORK

2.5.2 Treehouse

Treehouse9 is a specialised learning platform targeted at web development. They
make use of learning objects, referring to them as “courses” [21]. However, these
courses are also organised into “tracks”. Tracks consist of many courses, and courses
may belong to many tracks, resulting in a true reusable learning object architecture.

Treehouse also makes use of all of the connectivist principles through an inclusive,
friendly and massive user base. With more than 120,000 students [21] around the
world and a wealth of content, discussion tools and interactivity, Treehouse is an
excellent model for an online school.

9https://teamtreehouse.com/

Chapter 3

Project Design Overview

Despite the success and innovation present in online learning, there are still many
obstacles facing both students and educators. One such obstacle is the manual
organisation of learning content, which is a process that can be performed by the
student (edX1, Coursera2) or by the teacher (Treehouse3, Khan Academy4). Manual
content organisation is open to significant bias and potentially limits the effectiveness
of a learning system if the content is organised by one single individual.

This project aims to overcome this hurdle by combining established methods of
online learning with intelligent and automatic organisation of learning objects. By
modelling the relationships between learning modules a graph of recommended
learning pathways can be created. A possible learning graph that could be produced
using this system is shown in Figure 3.1. The traversals of this graph represent the
possible “learning tracks” a student can take through the content. This provides the
student with a possible path to follow, without firmly deciding on one in advance.

To provide initial direction to the student’s learning, a learning track corresponds to
a project the student is developing. This allows the student to pursue several learning
tracks at once, and to specify different topics of interest for each of these tracks.
This system will facilitate a more flexible approach to learning for each individual
student. In turn this could allow more effective and engaging learning experiences.

1https://www.edx.org/
2https://www.coursera.org/
3https://teamtreehouse.com/
4https://www.khanacademy.org/

13

14 CHAPTER 3. PROJECT DESIGN OVERVIEW

Figure 3.1: A possible learning graph for video game development, Nodes are
connected by the general concepts they relate to. Prerequisites are denoted using
a dashed line. Note: for readability not all possible connections are shown.

As modules lack strong relation to one another and have no explicit order of
completion, it can become difficult to illustrate the connections between concepts.
To maintain the cognitive flow and increase the relevance of content to a user, the
content of learning modules is parameterised. This allows authors to specify sections
of content to include or exclude based on a user’s progress and background in the
system. This can be used to highlight connections to related content, reassure users
that they know enough to complete a module and to abridge or expand content
based on a user’s current understanding. Using this system content can adapt itself
to draw connections to other concepts users have previous covered, and reinforce
both ideas through the connectivist principles.

The production of content in this system does not require the course planning
typically associated with producing a MOOC. This allows authors to focus on
the explanation of individual concepts rather than higher level planning. Existing
learning material can either be recreated in the system or simply embedded into
a learning module. This content embedding allows existing online tutorials to be
included in the recommendation system and allows users to discover this material
naturally.

Using this embedding, any existing series of tutorials can be imported into the
system rapidly and receive the benefits associated with tagging, feedback and
recommendation provided by the platform.

3.1. KEY FEATURES 15

3.1 Key Features

Given these requirements, and the core connectivist principles, the key features for
the system can be defined as follows:

1. Dynamic construction of “learning tracks” by assembling learning modules
automatically

2. Parameterisation of the content of learning modules to increase relevance
3. Fine granularity of learning modules, allowing flexible “learning tracks”
4. Discussion with peers of individual sections of the content
5. Flexible authoring tools to create for and import content to the system
6. The ability to include external content from the Internet

3.2 System Overview

Students begin using the system by creating a project (see Section 4.2.2) that
corresponds to what they are currently working on. This can represent either a real
project they are working through, or a field of study the wish to learn more about.
This project stores all information about the student’s use of the system. When
creating a new project users enter information about their desired areas of learning
and their current experience. This information is then used by the system to create
an initial set of recommended learning materials.

From this point users can begin consuming educational material on the platform.
Users work through learning objects (hereafter referred to as “learning modules”)
at their own pace. These are composed of text, images, code and mathematical
content as well as embedded interactive content. Each of these content blocks can
be parameterised using the metadata contained in the student’s current project.
Additionally, each of these content blocks can be discussed with other users to further
a student’s understanding. At the conclusion of a learning module users are presented
with a set of 4 recommendations for what to learn next. This process continues, with
recommendations being refined over time as more data is collected.

Users are also free to search for content they wish to learn and shift the focus of their
project to another set of topics. The system is able to respond to this and change its
recommendations rapidly to adapt. This platform gives users greater freedom, more
personal content and lower congitive overhead than existing learning systems.

Chapter 4

System Implementation

Figure 4.1: System Architecture Overview

The platform itself is implemented as a web application whose architecture is shown
in Figure 4.1. The application server, recommendation system and REST API
are written in Ruby1 using the Padrino2 web framework. MongoDB3 is used for
persistance and is accessed via the Object Data Mapper (ODM) Mongoid4. The
user interface is displayed to the end user in their browser and is constructed using
the React5 and Flux6 Javascript frameworks. Each of these technology choices is
discussed in the following sections.

1https://www.ruby-lang.org/en/
2http://www.padrinorb.com/
3https://www.mongodb.org/
4https://github.com/mongodb/mongoid
5https://facebook.github.io/react/
6https://facebook.github.io/flux/

16

4.1. TECHNOLOGY STACK 17

4.1 Technology Stack

To create the full application a variety of technologies were combined. The remainder
of this section details each choice, split between back-end technologies (server-side)
and front-end (client-side).

4.1.1 Back-end

There are two major technology choices to make for the server-side code: which
database to use and what application framework to use.

4.1.1.1 Database

To persist user accounts, data and the content itself the application requires a
database. The databases that are used in web application development are either
SQL or NoSQL based. SQL databases are typically relational and have a strict
schema that must be enforce. Conversely, NoSQL databases are either “key-value
stores”, “document stores” or graph databases and do not have a schema defined.
MySQL7, PostgresSQL8 and SQLite9 are the most common relational database
systems, whereas MongoDB10, CouchDB11 and Redis12 are common examples of
NoSQL databases. NoSQL databases are often faster, more easily scaled and simpler
to work with [22].

MongoDB (or Mongo) was selected as the persistance layer for the system. Mongo
provides schemaless storage of data, along with built-in support for sharding and
replication of the database [23]. This provides a fast development environment
coupled with a highly scalable database.

The BSON data format used to store documents in Mongo is easily translated to
JSON for communication with Javascript. This allows for simple interplay between
the server and client sides of the system.

7https://www.mysql.com/
8http://www.postgresql.org/
9https://www.sqlite.org/

10https://www.mongodb.org/
11http://couchdb.apache.org/
12http://redis.io/

18 CHAPTER 4. SYSTEM IMPLEMENTATION

To interface with the main web application, the Mongoid13 ODMwas used. Mongoid is
the recommended ODM by MongoDB. Mongoid allows declarative definition of models
and allows an optional “schema” to be defined on top of Mongo. Mongoid’s flexible
relationships, validation and querying are designed to facilitate rapid development
and iteration.

class Account
include Mongoid :: Document

Fields
field :email , :type => String
field :username , :type => String

Validations
validates_presence_of :email , : username

has_many : projects
belongs_to : current_project

end

Listing 4.1: An example model declaration using Mongoid. This is a simplified
version of the account model used in the system.

Listing 4.1 shows a heavily simplified model definition using Mongoid syntax. Models
are defined using standard Ruby syntax and Mongoid helper methods.

4.1.1.2 Application

The server-side application was developed using Ruby. This choice was made due to
Ruby’s expressive, declarative nature and its extensive use in the web application
field [24]. Declarative definition of application functionality typically reduces errors
in code and increases legibility to developeres [25]. This is especially relevant for the
development of a Representational State Transfer (REST) Application Programming
Interface (API), as much of the code written simply describes the available endpoints.

13https://github.com/mongodb/mongoid

4.1. TECHNOLOGY STACK 19

There are many available options for web application development in Ruby; the most
common of these are Ruby on Rails14 and Sinatra15. However, the web application
was created using the Padrino web framework. Padrino builds on Sinatra, and
retains the lightweight and performant request handling of Sinatra while adding more
complex web application features [26]. This includes permissions, sessions and a
rendering system [26]. Padrino enables the clear syntactical definition of API routes
as shown in Listing 4.2.

Doublejump :: App. controllers "/api" do

get : account do

if ! current_account .nil?
send_json current_account . to_hash

else
send_json ({ success : false , error: "Not logged in"})

end

end

end

Listing 4.2: Sample controller declaration showing the concise and readable
syntax Sinatra provides.

This reduces the cognitive overhead required to develop web applications and instead
shifts focus to the actual application logic.

4.1.2 Front-end

The front-end (or client-side) application is a single page application (SPA) written
using modern Javascript features. All Javascript is written using the ES201516

standards, this is detailed in Section 4.1.2.4.
14http://rubyonrails.org/
15http://www.sinatrarb.com/
16http://www.ecma-international.org/ecma-262/6.0/

20 CHAPTER 4. SYSTEM IMPLEMENTATION

The front-end application is built using a unidirectional dataflow design pattern known
as Flux17. This was developed by Facebook to provide a functional programming
inspired approach to user interface programming. The “view” layer of this architecture
is the React18 framework, also created by Facebook. For the visual style of the
application Syntactically Awesome Style Sheets (SASS)19 is used.

Each of these technologies’ merits and basic principles are detailed below.

4.1.2.1 React

There are many challenges associated with building rich user interfaces on the web.
Foremost among these is the lack of enforceable consistency in appearance and lack
of insight into the rendering process. React20 was developed by Facebook to alleviate
these issues. React provides component-based user interface development, with a
functional programming inspirsed rendering pipeline.

React components define a render method which maps the properties passed to
a component, and the current internal state of the component, to an HTML-like
intermediate representation of the Document Object Model (DOM) known as JSX21.
An example React component definition is shown in 4.3.

class MyComponent extends React. Component {
constuctor (props) {

super(props);
}

render () {
return (

<div >
<h1 >{ props.name }</h1 >

</div >
);

}
}

Listing 4.3: A sample component declaration using React and JSX.

17https://facebook.github.io/flux/
18https://facebook.github.io/react/
19http://sass-lang.com/
20https://facebook.github.io/react/
21https://facebook.github.io/jsx/

4.1. TECHNOLOGY STACK 21

Whenever the state or properties of a component change, the render method is
invoked and the changes to the DOM are applied. Rather than completely replacing
the existing elements, React checks for differences and changes the existing DOM.
This has massive performance benefits as modification of the DOM is one of the
most costly operations for the browser to perform [27].

The benefits of these design patterns and architecture choices, as claimed by Facebook,
include [28]:

• Predictable rendering
• Ensured synchronisation of data and user interface
• Simple testing and debugging
• Performant rendering of complex interfaces
• Promotion of good coding practice through decoupling and composition

4.1.2.2 Flux

Flux22 is a design pattern pioneered by Facebook as an alternative to the
Model-View-Controller (MVC) architecture. It promotes unidirectional data flow,
immutability and other functional programming concepts. There are three major
components to Flux:

Actions

Actions represent all possible updates to an application’s current state. This can
include both user input to the application interface and the result of any data requests
dispatched to a server.

Stores

Stores contain both the application data and logic for processing new data. This
consists of more than repositories of objects in use and can extend to anything related
to user interface state. The goal of stores is to place all data that may be read by
more than one “section” of the application into a common location. This helps to
overcome to difficulties of cascading changes and tightly coupled data.

22https://facebook.github.io/flux/

22 CHAPTER 4. SYSTEM IMPLEMENTATION

Stores subscribe to the stream of Actions that are dispatched and use these to update
the data within the store. While there is no specific rule given, it is recommended to
create one store per type of data.

Views

Views are provided by React in this platform. In Flux, the views translate the data
in stores to a user interface representation.

Unidirectional Data Flow

Figure 4.2: Unidirectional Data Flow as explained by Facebook[29]

The overall process of Flux can be seen in Figure 4.2. The benefits of Flux according
to Facebook include [29]:

• Reduction in tight coupling and edge cases
• Obvious separation of concerns
• Simple API interaction
• Predictable application state
• Simple testing

4.1.2.3 SASS

Syntactically Awesome Style Sheets23 (SASS) is a preprocessor for Cascaing Style
Sheets (CSS). It extends CSS with features such as variables, functions, mixins
and plugins. Specifically, SASS is used in this project as it complements the
component-driven approach used in React. Styles for components can extend and
compose existing styles, reducing repetition when defining similar components.

23http://sass-lang.com/

4.1. TECHNOLOGY STACK 23

4.1.2.4 Build System

All front-end code in the system is written using ECMA Script 2015 (ES2015), a
modern standard for Javascript. This ES2015 code also contains UI components
defined using JSX. ES2015 introduces many new features to Javascript, many of which
have arisen from the community. These include a formal class syntax, decorators,
promises and “arrow” (=>) closure definition. While these features do not change
what is possible in the browser, they greatly simplify development and increase
readability of the code. However, this code does not run natively in the browser
without preprocessing. Several projects have attempted to created a transpiler from
ES2015 to ECMA Script 5 (the previous, well supported standard). These include
Tracuer24 and Babel25, of which Babel is more commonly used.

Babel To build a deployable copy of the front-end system this ES2015 code is be
converted, or transpiled, to ES5. To accomplish this transpilation the Babel project
is used. Babel is capable of reading ES2015 and JSX code and emitting equivalent,
though less readable, ES5.

Browserify When delivering Javascript to the client in the browser, the number
of HTTP requests made are of great importance. A large number of requests can
result in an extended page load time, frustrating users.

This is often circumvented by bundling all Javascripts modules and libraries into a
single file. Browserify and Webpack are some of the many tools that can perform
this task. For this project, Browserify is used as it is more widespread. Browserify
parses Javascript, extracts the dependencies for every module and bundles these all
together into one file. By using closures these modules retain their default scoping
and normal operation.

SASS Similarly, before delivering CSS to the browser it must be converted from
SASS into regular CSS and bundled into a single package. This is accomplished
using the official tools developed by the SASS team.

24https://github.com/google/traceur-compiler
25https://babeljs.io/

24 CHAPTER 4. SYSTEM IMPLEMENTATION

Sourcemaps & Minification Due to the obfuscation caused by the “compilation”
of both the Javascript and CSS, debugging can become problematic. To combat this
sourcemaps are generated from both the SASS compiler and Browserify. Sourcemaps
can be loaded by browser debugging tools to map errors in the final code to the
original sourcecode.

This allows developers to enjoy the benefits of these technologies while mitigating
the drawbacks for debugging.

Gulp Gulp is a task runner that can be used to invoke the Browserify and SASS
build processes. It also includes functionality to “watch” the filesystem and triggering
a build as files change. This allows the latest code to be available in-browser as soon
as a save has completed.

4.2 Domain Model of System

Figure 4.3: Domain Model of the System with all acting Entities

The domain model of the system (see Figure 4.3) includes user related data, learning
content and all information collected from users during their use of the system. Each
entity, its purpose and certain specific areas of interest are detailed below.

4.2.1 Account

All users of the system require an account to access or author content. Accounts
simply record the user’s name, email, username and password.

4.2. DOMAIN MODEL OF SYSTEM 25

Passwords are stored in an encrypted form through use of bcrypt26. Accounts are
authenicated by encrypting the password supplied by users and comparing the hashes.
This is a standard method of authentication and provides a second layer of protection
should the database be compromised.

4.2.2 Project

A project in the system encapsulates a student’s learning in a particular field. All
metadata and topic biases are scoped within an individual project and do not
influence the system as a whole. Projects also contain the set of learning modules
completed by a user so far.

4.2.2.1 Metadata

Metadata is contained within a project and may consist of the topic biases a project
has, which modules have been completed in the project and general key-value storage.
Any arbitrary key-value data can be stored in the project via the REST API. This
can be accessed by content when rendered to make use of user input.

4.2.3 Topic

Topics are used to tag and categorise content within the platform so it can be
interpreted and suggested by the recommendation system. Each learning module
has a set of topics it pertains to, as does each project. For example, a lesson
explaining how to use pointers in C may have the topics: Memory Management
and Programming Basics. Topics are a key component of recommendations in the
system. As outlined in the Recommendation System (section 4.5), they are the most
significant factor in recommendation.

26http://bcrypt.sourceforge.net/

26 CHAPTER 4. SYSTEM IMPLEMENTATION

4.2.4 Learning Module

Learning modules represent a single unit of learning on the platform. These are
the actual entities that are suggested to students via the recommendation system.
Learning Modules are categorised by tagging them with the key topics they relate to.
Each learning module is built using a series of Content Blocks, which are outlined in
Section 4.2.5.

The learning module provides a uniform interface for dealing with content in the
platform and allows the system to function without any explicit knowledge of the
content held within a module.

4.2.4.1 Comment

Comments are embedded within Learning Modules using Mongo’s embedding
functionality. Comments can therefore only be queried within a given learning
module. This keeps data encapsulated and simplifies data transfer. Additionally, in
a large scale MongoDB system embedding has positive performance implicications
[30]. When querying for the comments relating to a Content Block, no filtering of
results needs to occur as the comments are automatically retrieved when accessing
the Content Block.

4.2.5 Content Block

Content Blocks are used to build the Learning Modules in the system. A content
block takes one of four forms; each of these has a distinct appearance when rendered
to users and a slightly different set of fields.

1. Markdown
• Stores a markdown string which can be filtered and parameterised in real

time (see 4.6)
2. Code

• Stores source code and the language it is written in
3. Image

• Stores a URL to access the image
4. Math

• Stores source LaTeX markup to generate math

4.3. INTERFACE 27

4.2.6 Feedback Data

To increase the accuracy and personalisation of learning content several types of
feedback data can be stored in response to user actions. The usage of all data types
in the recommendation system is explored in full in Section 4.5.

Difficulty Rating

Users can rate the difficulty of particular Learning Modules after completing them.
This is used to determine how early a module should be recommended to a user.

Topic Score

For each topic a user has encountered in the system an experience score is recorded.
This represents how much exposure a user has to a topic. The higher this value the
more likely it is that a Topic will be recommended to a user.

Topic Relevance Rating

Users can indicate which Topic they feel is most relevant to a Learning Module after
completing it. This is used to scale Topic Scores using relevance calculations.

Transition Event

When a user transitions between two Learning Modules the system records this path
and will, over time, suggest the most common paths even if they conflict with the
expected set of recommendations.

4.3 Interface

Learning platforms depend heavily on their user interfaces [31]. No matter how
relevant content is, or how easy it is to comprehend, the interface itself can prevent
users from ever learning. It follows that the user interface and user experience design
is core to success of this project.

28 CHAPTER 4. SYSTEM IMPLEMENTATION

4.3.1 User Interface Flow and Functionality

The user interface of the system has been designed in response to the tasks that
users complete on the platform. Within this section each view in the application is
detailed in terms of which tasks it enables how it enables them.

4.3.1.1 Tasks

For a user to make use of the platform a set of tasks the platform much facilitate
was devised:

1. Register Account
2. Log Into Account
3. Create a Project
4. View all Projects
5. Receive Recommendations
6. Search for Learning Modules
7. Undertake Learning Module
8. Discuss Learning Material
9. Resume Project
10. Enter Feedback
11. View the Reason for a Recommendation
12. View Previous Completed Modules
13. Create New Content
14. Test Parameterised Content

4.3.1.2 Intended User Interface Usage

Generally there are a few paths users can take through the user interface on the
platform. These are defined by the sequence of views that users visit on these paths.
Each view, its purpose and its functionality are detailed in the follow sections.

A: New User Joining Platform

Users register for the platform and are directed to their dashboard to introduce them
to the concept, from here they are immediately directed to create a new project and
then begin learning within that project, see Figure 4.4.

4.3. INTERFACE 29

Figure 4.4: UI flow for a new user joining the platform

B: Existing User Resuming Work

Figure 4.5: UI flow for a user resuming their work

After logging in a user is taken to their dashboard where they can resume either the
last project they undertook, create a new project or resume any older projects, see
Figure 4.5.

C: Browsing Content and Receiving Recommendations

Figure 4.6: UI flow for a browsing content and receiving recommendations

Users receive their recommendations on the Project Summary page and can begin
content consumption. Users can return to the dashboard or project summary from
any learning module, see Figure 4.6.

D: Editing Existing Content

If a user is an administrator they are permitted to edit and update existing learning
modules, see Figure 4.7.

E: Create New Content

If a user is an administrator they are permitted to create a new learning module
from their user dashboard, see Figure 4.8.

30 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.7: UI flow for a user editing existing content

Figure 4.8: UI flow for a user creating new content

4.3.1.3 Login Form

Tasks: 2

The login form (see Figure 4.9) is straightforward and implements the standard set
of two fields. The user’s email is used for authentication as they are free to change
their username. Each field has a brief description of its purpose in addition to the
label.

If a user does not have an account they can choose to create a new account using the
“Create One” link below the submission button. If an authentication error occurs the
user is immediately informed without clearing the form fields. After login succeeds
users are directed to their dashboard.

4.3. INTERFACE 31

Figure 4.9: Login form interface

4.3.1.4 Registration Form

Tasks: 1

User registration (see Figure 4.10) consists of typical information entry including
the user’s name, their preferred username, their email and their password. The form
makes use of the extended description area for each input field (see Section 4.3.2.2)
to explain the purpose of each field. Placeholder values are also used to indicate the
type of input expected from the user.

HTML5 validation is used on the form to catch user errors, such as invalid email
addresses, before actually submitting to the server. Any error messages during
registration are displayed above the submission button so users can immediately
see them and take action. After registration succeeds users are directed to their
dashboard.

32 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.10: Registration form interface

4.3.1.5 User Dashboard

Tasks: 3, 4, 9

The user dashboard (see Figure 4.11) gives a listing of all the projects a user has
created as well as highlighting the most recent active project. This is intended to
speed up the process of resuming where a user left off when returning to the system.

The dashboard allows users to manage their projects (see Section 4.2.2) and gives
them an overview of every action they have undertaken so far on the platform. The
grid-like display for projects was chosen over a simple list to increase scannability
and decrease the effort required to locate an existing project.

The dashboard also facilitates creation of new projects via the action button displayed
in Figure 4.11.

4.3. INTERFACE 33

Figure 4.11: User dashboard display, the current project is the project the user
was last active in

4.3.1.6 Project Creation

Tasks: 3

Before creating a project users are given a brief introduction to what a project is
and how they should treat them (see Figure 4.12). Users can then go on to name
their project, specify the areas they are interested in learning about and their prior
experience.

Figure 4.12: Introductory message bubble for creating a new project

34 CHAPTER 4. SYSTEM IMPLEMENTATION

Both the areas of interest and areas of prior experience are presented using the Topic
Cloud (see Section 4.3.2.3 and Figure 4.13) interface. Users are required to nominate
exactly 3 areas of interest to ensure that the system has enough information for the
first round of recommendations. This limit is also imposed to prevent users from
selecting too wide of a range of topics and producing meaningless recommendations.

Figure 4.13: Project name input field and tag clouds displayed during project
creation

Similarly, users can select up to three areas of prior experience but may choose to
nominate as few as they wish. This is due to the fact that a student may literally
have no areas of experience, or may feel their experience is irrelevant to the project
they are undertaking.

4.3. INTERFACE 35

4.3.1.7 Project Summary

Tasks: 5, 6, 11, 12

The project summary page shows users their current set of recommendations (see
Figure 4.14). Reasons for these are available on hover (see Section 4.3.2.7). This is
displayed first as it is likely users will be returning to the platform to start a new
session of learning.

Figure 4.14: Project summary recommendations

Additionally users are able to search for particular content from the project summary
(see Figure 4.15), selecting any module – including those they have already completed
and those for which they have not satisfied the preqrequisites. This is to ensure that
content is as easy to find as possible and that users are free to choose to learn any
content (see Section 2.1.1).

Figure 4.15: Project summary search field

36 CHAPTER 4. SYSTEM IMPLEMENTATION

Finally users can also view a listing of all the modules they have completed so far in
the project (see Figure 4.16). This gives users an overview of the progress they have
made and a sense of satisfaction if the list contains a large number of entries.

Figure 4.16: List of complete modules shown in the project summary

4.3. INTERFACE 37

4.3.1.8 Content Consumption

Tasks: 5, 7, 8, 10, 11

Figure 4.17: Title, author and background information regarding a learning
module

All learning modules are displayed with the title, author and list of topics (see Figure
4.17) above the main body of the content. The body of the learning module is
composed of a series of Content Blocks (see Section 4.2.5). Each of these blocks can
be discussed using the comment panel (see Section 4.3.2.4 and Figure 4.18).

Upon completion of the module – indicated by the user clicking the finish button –
users can enter feedback and receive their next set of recommendations as shown in
Figure 4.19.

This explicit completion of a module is used to ensure users can leave the page
without influencing their future recommendations. Automatically flagging a module
as complete on the users part could lead to unexpected behaviour, which contradicts
the Nielsen design principles of user control, freedom and error prevention [32].

38 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.18: Commenting interface

Figure 4.19: Module completion feedback and Recommendations

4.3. INTERFACE 39

4.3.1.9 Content Editor

Tasks: 13, 14

Figure 4.20: Content editor interface

The content editor (see Figure 4.20) allows an author to compose learning modules
by creating and arranging content blocks. To make the authoring process as easy as
possible several features have been included:

Drag and Drop

The content blocks can be rearranged through drag and drop as this is one of the
most physically relatable ways to organise a list. As stated by the Nielsen design
principles, design should mirror the real world whenever possible [32].

Identical Edit and Consumption View

40 CHAPTER 4. SYSTEM IMPLEMENTATION

A potential challenge of many online authoring systems is the discrepancy between
the content during editing and during consumption. This is often mitigated through a
preview process, however this can also prove cumbersome. To attempt to alleviate this
issue and aid the production of content, all content blocks are displayed identically
for both the author and the student.

Parameterisation Testing

The creation of parameterised content closely resemebles the process of programming.
Each block of content is effectively a function with takes project metadata as a
parameter and returns the final output for a student. Given the potential complexity
of this process debugging tools have been included in the content editor. Authors
can simulate the metadata of a student at any time using the JSON input field above
the main content (see Section 4.6 for parameterisation detail).

4.3. INTERFACE 41

4.3.2 Design Patterns

A description of the signfiicant design elements and the reasoning behind their
inclusion follows. Where relevant design choices refer to the task they are intended
to facilitate.

4.3.2.1 Message Bubble

When a section of the system is introduced to a user, a “message bubble” is displayed
with the platform’s logo. These messages deliver basic tutorial information in
conversational format as indicated in Figure 4.21.

Figure 4.21: The message bubble is used to explain the platform to users in a
conversational manner

From the original Nielsen design principles [32], it has been shown that users respond
positively to designs that are already familiar. In the modern era of digital interaction,
messaging has become ubiquitous [33]. In turn conversational voice has begun to
replace formal voice in user interfaces, as designers begin to target their work towards
particular cultures [34]. Users often respond more positively to conversational
language, as it is more relatable [35].

4.3.2.2 Input Fields

Throughout the platform all input fields are styled to be consistent. As shown in
Figure 4.22 the input fields resemble traditional paper form fields with a simple label
and underline to indicate the need for user input. Each input field also supports
display of a small descriptive sentence beneath the input (see Figure 4.22).

This was chosen over more common patterns such as tooltips, blocks of prose or
“help icons” to fit with the overall conversational and friendly design of the system.
This solution combines the immediacy of prose with the proximity of tooltips and is
easily ignored if users do not require assistance.

42 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.22: A sample input field used on the Login Page. Input fields include
a label, placeholder text and an optional explanation field.

4.3.2.3 Topic Cloud

When a user creates a new project in the system, they are presented with an input
field to name the project and two questions prompting users to select a range of
topics to learn about.

These topics resemble a “tag cloud” and are designed to avoid implying any ordering
or relationship between topics. Topics can be selected through a click and in response
to this they become enlarged through an animation. This gives users feedback that
their click was accepted by the system and allows them to see all the currently
selected items at a glance. This is done to ensure users understand the current state
of the form, in accordiance with the Nielsen design principles [32]. Topic clouds are
used during project creation and are visible in Figure 4.13.

4.3.2.4 Inline Commenting

While users are working through learning modules they have the ability to leave
comments on each content block, as well as read the comments left by other users in
the past. To indicate that there are comments to be read a “speech bubble” icon,
along with a count of the comments, is displayed. If there are no comments to display
then an “add” icon is displayed instead (see Figure 4.23).

When this icon is clicked the comment panel (see Figure 4.18) animates out from the
icon, making the source of the panel clear to the user. The comment panel itself is
designed to resemble common messaging interfaces. As discussed in Section 4.3.2.1,
messages have become ubiquitous and reusing the same design pattern reduces the
cognitive overhead for users, as they already understand the interface.

4.3. INTERFACE 43

Figure 4.23: Left: "Add Comment" icon, Right: "Read Existing Comments"
icon

The inline approach to comments has several benefits over a combined comments
section or a separate discussion board:

• It is immediately clear which content comments pertain to
• Comments can be viewed on the same page as the content being discussed,

helping to affirm content
• Users can add comments immediately when they feel the need to do so

This is a pattern that is gaining momentum across the web, with Medium27, Livefyre28

and Carnival29 gaining popularity.

4.3.2.5 Avatar and User Identification

Users are identified by a username and an avatar (if one is defined) throughout
the system. When a user is referred to by username it is prepended with the @

symbol. This is a defacto standard on the internet to imply that a term is a username.
Originally established by Twitter, this convention has spread to the majority of
platforms where users may want to refer to one another.

The originally intended meaning on Twitter was that a message was directed “at”
a user, but this shifted to a method of typesetting the username over time. It is
possible to implement usernames without this pattern, however as with most design
choices on the platform familiarity and clarity are assist in retaining user engagement.

27http://medium.com
28http://web.livefyre.com/
29http://carnivalapp.io/

44 CHAPTER 4. SYSTEM IMPLEMENTATION

4.3.2.6 Content Types

All learning modules are constructed from the four basic Content Blocks: Markdown,
Image, Math and Code. Each of these have particular display characteristics outlined
below, but it is important to note that all four types are edited using the same
interface:

For writing Markdown, Math, Code examples or entering image URLs the Ace
editor30, developed by Cloud9, is embedded in the content editor (see Section
4.3.1.9).

Code Display In addition to being used for editing code samples, the Ace editor
is also used for displaying code to the user. This simplifies the process of content
creation for authors as the code entered in the editor is displayed identically to the
end user (see Figure 4.24).

Figure 4.24: An example of a code sample as displayed to a user

In similar systems code samples are often displayed using a separate system. These
support syntax highlighting but do not provide advanced features such as bracket
matching and code folding. Using Ace for display allows users to imagine they are
actually editing the code themselves, as they would in a real development environment.
Once again, this choice was made to enhance the consistency, familiarty and clarity
of the system.

Image Display When an image is displayed it is centered on screen and restricted
in size. This is to present prevent images overwhelming the content and to enforce
consistency between all images.

30https://ace.c9.io

4.3. INTERFACE 45

Markdown Display Markdown content is displayed using the same baseline font
size as the rest of the application. The font used throughout the platform is Nunito31

and was selected for its readability and playful tone. In general, sans-serif fonts have
been found to be more readable on a computer display [36], and a more “serious”
font choice can severely affect the user impression of the system [37].

When displaying the resulting text to users, markdown is coverted to HTML using
the popular Marked32 library.

Math Display The math content type is intended to display a single equation,
and as such equations are displayed in the center of a content block. This resembles
the typical presentation of equations in academic writing and draws attention to the
equation in a similar way to an image. Equations are written using LaTeX syntax,
as this is the common standard for typesetting mathematical content. To render
the source LaTeX into HTML, the KaTeX33 library from Khan Academy is used.
KaTeX was chosen over the more common MathJax34 as its performance is far better,
despite supporting a smaller syntax set.

Embedded Content In place of the standard series of content blocks, learning
modules can also be composed of external content. In this case the body of a learning
module is replaced with an inline frame (iframe). This effectively embeds another
webpage within the platform, see Section 4.3.2.9 for more detail. Visually this is
chosen over opening the external reference itself to indicate to the user that they
remain within the platform.

4.3.2.7 Recommendations

Recommendations are displayed to users on both the project summary and at the
conclusion of each learning module. Whenever these recommendations are displayed
it is in a set of four choices (see section 4.5.3) laid out horizontally (or in a grid view
when the page is condensed), see Figure 4.19 for example usage.

31https://www.google.com/fonts/specimen/Nunito
32https://github.com/chjj/marked
33http://khan.github.io/KaTeX/
34https://www.mathjax.org

46 CHAPTER 4. SYSTEM IMPLEMENTATION

Recommendations are displayed from left to right, with the most relevant
recommendation on the left. For English speakers this ordering is implied by the
traditional left-to-right reading direction. However, the goal of this layout is to
retain user control and allow users to contradict the recommendation system and
move along a different path. For each recommendation, users can hover over the
card to display information on the reason the module was recommended. This is to
inform the user and give them the freedom to overrule a recommendation made by
the system.

4.3.2.8 Parameterisation Indicator

Figure 4.25: Parameterisation is indicated by a "?" symbol, and shows a tooltip
on hover

When content is parameterised, a user may wonder why a particular piece of text has
been inserted. To give users some insight into the function of the system inserted
content is tagged with a question mark icon (see Figure 4.25). When a user hovers
their cursor over this icon the reason for the insertion is displayed. This allows a
user to either choose to focus on the content, if the reason does apply to them, or
ignore it if they feel it is irrelevant or inaccurate.

By giving users the ability to learn more about the system’s functionality they retain
their control over their learning. This aligns with the Nielsen design principle of
giving users visibility into the system status [32].

4.3.2.9 External Content

Learning modules can consist of external content. Authors can enter a URL to be
displayed in place of the body of a learning module. This allows a large portion of
content on the Internet to be used in the system with minimal effort. Given the wide
availability of online tutorials this facilitates unification of content on the web and
reduces the effort required to discover it.

4.3. INTERFACE 47

This enables the system to function as a content aggregation platform as well as
an integrated learning system. This also helps to combat content duplication and
reproduction by facilitating the discovery of educational material that students may
not otherwise find.

External content embedded in a learning module is annotated with topics and fits into
the recommendation system via the same interface as regular content. It also retains
the same feedback options post-completion and provides a set of recommendations.
This addresses many of the issues associated with third-party tutorials as explored
in Section 2.4.2.

4.3.3 Implementation

Using React and Flux, the UI of the application is implemented declaratively using
functional programming techniques. This facilitates the component-based design
used throughout the application.

When a page is loaded, the page’s controller dispatches a series of actions that trigger
retrieval of data from the REST API. These actions can be expressed declaratively
using decorator annotations as shown in Listing 4.4.

...
@data(

props => [
fetchProject (props. project),
fetchModule (props. module),
fetchTopics (),
fetchNextModules (props.project , props. module),
fetchContents (props. module)

]
)
export class ViewModulePage extends React. Component {
...

Listing 4.4: Sample data annotation declaration. This lists the actions that
must be performed before rendering this component.

48 CHAPTER 4. SYSTEM IMPLEMENTATION

The data annotation accepts a function that maps the properties of a component to
an array of actions. These actions are dispatched when the component is mounted
on the page. Before the a page is rendered, each of these declared dependencies
are satisfied and passed into the application data store. Requests to the API are
performed simultaneously; each request creates a promise when dispatched and the
completion of all requests is detected using Promise.all to consolidate these promises.

The data received in response to these actions is passed through the reducers defined
using Redux. Once this data has been placed in the application data store, it can
be accessed by the component. This is also performed declaratively using a second
annotation shown in Listing 4.5.

@connect (
state => (

{
modules : state. module .items ,
projects : state. project .items ,
contents : state. content .items ,
topics : state.topic.items ,
account : state. account . currentAccount .data

}
)

)

Listing 4.5: Sample of the connect annotation this gives the mapping of global
state to component properties.

This connect annotation accepts two functions. The first of these maps the app state
to a series of properties which are in turn passed to the component. These values
become accessible through this.props during rendering, e.g. state.module.items is
mapped to modules, which becomes readable through this.props.modules.

On each page load the following sequence of events occurs:

4.3. INTERFACE 49

1. Initial page load
2. Dispatch data retrieval actions

• These are dispatched concurrently
• Each action returns a promise that resolves upon completion

3. Responses are received and processed (see Section 4.3.3.1)
4. All promises resolve
5. Component is rendered using store data

This architecture minimises repeated code for components, prevents internal data
management (by creating a uniform data storage interface) and allows declarative
definition of data dependencies.

4.3.3.1 Flux Implementation

In the system the Flux (see Section 4.1.2.2) data flow pattern is used. This is
faciliated through Redux35, an implementation of the design pattern. Redux takes a
functional programming inspired approach to Flux and relies on three core concepts:

1. State Tree

Rather than the concept of stores promoted by Flux, Redux combines all stores into
a single state tree, represented in JSON. This tree itself is immutable and can only
be influenced by a Reducer. In the platform this tree is divided into subtrees with
each subtree storing one particular type of entity. On the frontend the following
entities are stored:

• Learning Modules
• Projects
• Topics
• Accounts
• Content Blocks
• Notifications

2. Actions
35http://redux.js.org/

50 CHAPTER 4. SYSTEM IMPLEMENTATION

Actions in Redux are almost identical to the specification given by Flux. They are
simple data types that contain either parameters or results of a request and are
processed by Reducers to update the state tree.

3. Reducers

Reducers are a functional programming approach to action responses. They accept
the previous application state and an action and return the updated state. Reducers
must be pure functions, that is to say, they must use only the data passed to them
to create the output and must always return the same output given the same input.

Reducers can be composed and nested to create arbitrarily complex state trees. This
pattern and implementation have several key benefits:

• Synchronous processing of actions
• Visualisation of the state tree
• Immutability of state data
• Predictable responses to actions

Which together help to prevent race conditions and ambiguous states in the user
interface.

4.3. INTERFACE 51

// Initial state
state = {

items: [
"one",
"two"

]
}

...

// Action creation method
function addItem (item) {

return {type: ADD_ITEM , item: item };
}

// Dispatch action to add an item
dispatch (addItem ("three"));

...

// Reducer definition
(prevState , action) => {

switch (action .type) {

case ADD_ITEM :
return Object . assign ({}, state , {

items: prevState .items. concat (action .item)
});

}
}

...

// Final state
state = {

items: [
"one",
"two",
"three"

]
}

Listing 4.6: An example state tree action and reducer system using Redux with
psuedo correct suntax.

52 CHAPTER 4. SYSTEM IMPLEMENTATION

4.3.3.2 Content Editor Implementation

As discussed in Section 4.3.1.9 each content block in the content editor is displayed
identically to both the author and the student. This is accomplished by recycling the
same React component in both use cases. By simplying disabling the editable flag
on a content block component it can be shown to students without any authoring
tools.

Each of these content blocks can also be reordered using a drag-and-drop system.
This functionality is provided by dragula36 with a custom React binding. When
saving a module each content block is responsible for persisting its own content. Once
all modules have been saved the parent component inspects the DOM to extract the
ordering of the blocks within the module.

This method of persistance allows content blocks to preserve their comments even
if the containing learning module is completely rearranged or the content block’s
content is edited.

4.4 Content writing

For the system to be effectively evaluated and tested a library of content was
developed. This was comprised of a range of programming and technical topics
selected to give both significant breadth and depth to the system. This allows
students using this proof-of-concept implementation to find their distinct areas of
interest within the library.

Many learning modules also include examples of external activities, code snippets,
LaTeX style math rendering and referencing content from around the internet. This
is intended to demonstrate the capability of the content-editor which was used to
create all content (see Section 4.3.1.9). The learning modules created are outlined in
Table 4.1 below.

36http://bevacqua.github.io/dragula/

4.5. RECOMMENDATION SYSTEM 53

Table 4.1: Listing of the learning modules in the system.

Module Title Topics

Line Drawing 2D Rendering, Geometry, Pixels
Axis-Aligned Bounding Box Collision Detection, Game Movement
Collision Detection Collision Detection, Game Movement
Introduction to Programming Programming Basics, Programming, Python
Introduction to Python Python, Programming Basics
Handling User Input Python, User Input, Programming Basics
Reading Files Python, String Manipulation, File Handling
Writing Files File Handling, Python, String Manipulation
Introduction to HTML HTML, Web Development, Page Layout
Introduction to CSS CSS, Web Development, Page Layout
String Manipulation String Manipulation, Programming Basics, Programming
2D Graphics 2D Rendering, Geometry, Pixels
Circle Drawing 2D Rendering, Geometry, Pixels
Introduction to Pointers Programming Basics, Memory Management
Basic Image Editing Image Editing, 2D Rendering

These topics and areas of interest were determined through analysis of other MOOCs
targeting progammers, first year university topics and popular areas of development.
Content was created with a primary focus on breadth of content, rather than depth.
This allowed more diverse and thorough testing of the recommendation system and
more realistic user testing. It should be noted that due to both the subject matter of
these modules and the parameterisation system available to authors, content requires
some background in programming to create.

4.5 Recommendation System

As outlined in Section 2.2, there are three general categories of recommendation
system. The project employs a hybrid approach to content recommendation.
Throughout this section the relevance “score” will be used to describe how relevance
is computed. This is an value that increases as two learning modules are more
relevant to one another.

54 CHAPTER 4. SYSTEM IMPLEMENTATION

4.5.1 Content Driven Aspects

To judge how related two individual learning modules are, the system first compares
which topics (see Section 4.2.3) overlap between the modules. The underlying
assumption behind this is that the more topics shared between the modules, the
more relevant to one another they are.

Module to Module

The relevance score of two modules to one another is computed by comparing their
respective sets of topics. It should be noted that modules receive a relevance score
boost for each topic they share but do not receive a penalty for topics that are not
shared. This allows more “lateral” recommendations, promoting exploration of a
breadth as well as a depth of learning.

The specific details of this process are detailed in Section 4.5.3.

Module to Project

In addition to this inter-module measure, there is also a calculation of how relevant
a given module is to the user’s current Project (see Section 4.2.2). The users project
contains a map of topics the user has encountered to a “topic score” for the user
with each topic. When a user completes a module, the topic score for each topic
that module is tagged with is increased. These updated scores are then stored in the
project. When calculating a module’s relevance, the score for each of its topics is
retrieved from the current project and used to boost the module’s relevance score.

From this it can be understood that one unit of topic score corresponds to completion
of one module associated with that topic. Following from this, one unit of relevance
score is equivalent to one unit of topic score.

Prerequisites

Modules can also be related to one another by defining prerequisites. A module that
is a prerequisite for others is assumed to be related to its dependent modules. When
a prerequisite is completed the modules that depend on it are given a large relevance
score boost.

4.5. RECOMMENDATION SYSTEM 55

4.5.2 Collaboration Driven Aspects

The collaboration driven aspects of the recommendation system rely on recording
information both passively and actively from users.

Each time a user moves from one learning module to another, by selecting a
recommendation, the system records this as a Transition (see Section 4.2.6). Each
transition provides a small boost in relevance for the module in the same situation for
every other user on the platform. Over time this allows users to completely override
the system’s recommendations.

After the completion of a learning module users can optionally give active feedback
to the system. This is accomplished via two questions they can answer:

1. What topic did you think was most relevant to this module?

Users can choose from a list of all topics the module is tagged with, and
this nomination allows the system to assign a weighting to each topic-module
combination. By default a module has an equal weighting between all topics,
but this shifts ovet time as more users give feedback.

This impacts the recommendation system by multiplying the score a user has
in a topic by its weighting. The goal of this feedback is to crowdsource the
"true" weighting of a learning module’s topics.

2. How challenging did you find this module?

Users can select from "Easy", "Average" or "Difficult". This facilitates calculation
of an average module difficulty. A more difficult module will be recommended
later in a student’s learning path. This is accomplished by assigning a penalty
to a module’s relevance score, corresponding to its difficulty.

56 CHAPTER 4. SYSTEM IMPLEMENTATION

4.5.3 Combination and Interpretation

Whenever a set of recommendations is presented to the user, all of these facts are
combined to produce a set of 4 modules to choose from. The user is given a small
number of modules to make the decision simple, but to retain control of their learning
project. This is an important factor for implementation of the connectivist principles
(see Section 2.1.1). The exact number shown was chosen by experimentation and
visual appropriateness and other numbers of recommendations could be tested (see
Section 6.2 for Future Work).

A high level overview of the algorithm used to compute recommendations is given
below. A psuedocode version of this algorithm can be found in Appendix A.

4.5.3.1 Algorithm

1. The last module a user completed is selected (referred to as last_module)
2. For each topic the user has experience with, a map (topic_lookup) is created

between topic id and topic score
3. For each learning module (learning_module) in the system, the relevance score

is computed using last_module and topic_lookup:
1. The number of transitions (transitions) between last_module and

learning_module are counted
2. For each topic (topic) learning_module is tagged with:

1. The relevance score is increased by the topic score a user has for topic

2. The number of times topic has been nominated as the most relevant
topic (relevance_rating) is determined

3. The relevance score is increased by 0.5 * relevance_rating

3. For each topic shared between last_module and learning_module the
relevance score is increased by 2

4. If last_module is a prerequisite for learning_module then the relevance score
is multiplied by 1.1

5. The relevance score is increased by 0.25 * transitions

4. Modules are sorted by descending relevance score
5. The first four modules that have had their prerequisites satisfied and have not

yet been completed by the user are selected

The result of this process simply delivers the final recommendations to the frontend
application via an API call.

4.6. PARAMETERISATION FUNCTIONALITY 57

All scaling factors are opinionated and tailored to yield the correct results in testing.
Through experimentation on a large dataset and user group these could be significantly
refined (see Section 6.2).

4.6 Parameterisation Functionality

Within a learning module, content can be parameterised when displayed to users.
This is the process of altering the content in response to a set of input parameters.
When a learning module is rendered in the browser, it is passed a JSON payload
(see Listing 4.7) containing the user’s current relationship with various topics as well
as a list of modules they have previously completed.

{
" learning_modues ": {

" reading_files ": true
" writing_files ": true
" introduction_to_python ": true

},
" topic_scores ": {

" python ": 3,
" file_handling ": 2

},
" misc_value_a ": 123

}

Listing 4.7: An example JSON payload that could be passed to the
parameterisation system.

This data can be interpreted and used to customise content displayed within the
learning module. This was accomplished by adding Handlebars.js37 into the rendering
pipeline. Handlebars complements the goals of a markdown based content editor as
it is both readable and concise. Additionally, the syntax used by Handlebars does
not conflict with that of markdown or HTML. An example of markdown combined
with Handlebars can be seen in Listing 4.8.

37http://handlebarsjs.com/

58 CHAPTER 4. SYSTEM IMPLEMENTATION

// Handlebars template

My name is {{ name }}, I have {{ houses . length }} houses :

{{# each houses }}
- {{ address }}
{{/ each }}

{{# if isRich }}
You 've got to be rich to afford {{ houses . length }} houses .
{{/ if}}

// Source data
{

"name ": "Ben",
" houses ": [

"123 Fake Street ",
"122 Fake Street "

],
" isRich ": true

}

// Final output

My name is Ben , I have 2 houses :

- 123 Fake Street
- 122 Fake Street

You 've got to be rich to afford 2 houses .

Listing 4.8: An example of handlebars combined with markdown syntax.

Handlebars also supports custom helper methods. To accomplish more semantic
authoring of content several of these have been defined:

{{#hasDone <MODULE_NAME>}}

hasDone prints the content it contains if a user has completed a specific learning
module.

{{#hasNotDone <MODULE_NAME>}}

4.6. PARAMETERISATION FUNCTIONALITY 59

hasNotDone prints the the content it contains if a user has not completed a specific
learning module.

{{#hasExperienceWith <TOPIC_NAME> <TOPIC_SCORE_THRESHOLD>}}

hasExperienceWith prints the content it contains if a user has a topic for the topic
TOPIC_NAME that is greater than or equal to TOPIC_SCORE_THRESHOLD.

{{#hasNoExperienceWith <TOPIC_NAME> <TOPIC_SCORE_THRESHOLD>}}

hasNoExperienceWith prints the content it contains if a user has a topic for the topic
TOPIC_NAME that is less than or equal to TOPIC_SCORE_THRESHOLD.

An example usage of these methods can be found in Listing 4.9.

To export data for later or for use in another program , writing to a
file is very useful .

{{# hasDone " Reading Files "}}
Reading files shares a huge amount with writing them , all the same
principles apply except that we work with `write ` rather than `read `
as the main operation .
{{/ hasDone }}

{{# hasNoExperienceWith " Python " 10}}
Python actually makes writing files as simple as possible , so don 't
be scared , this should be easy to follow .
{{/ hasNoExperienceWith }}

{{# hasExperienceWith " Python " 10}}
Working with files in python is fairly straightforward , as you know
by now.
{{/ hasExperienceWith }}

For our purposes , we 're going to focus on writing text files rather
than working with binary .

Listing 4.9: A sample usage of the custom handlebars functionality taken from
the Writing Files module in the system.

For text based content rendering occurs as illustrated by Figure 4.26.

60 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.26: Rendering cycle for parameterised content

Additionally, the system exposes a REST API endpoint to facilitate both the storage
and retrieval of metadata that can be used to parameterise content. This metadata
is included in the JSON payload delivered to the front-end. Each request to this API
returns the JSON payload a response which can once again be fed into the rendering
pipeline detailed in Figure 4.26.

Due to the Flux-React-based architecture (see Sections 4.1.2.1 and 4.1.2.2) learning
modules can respond to changes in metadata immediately without reloading the
page or interrupting the user. Following from this, activities within learning modules
can communicate with the platform API and cause learning modules to change while
the user works through them.

Chapter 5

Verification and Validation

With a user facing platform it is important to evaluate not only the correctness of
code but the usability of the interface. Accordingly both code (unit) testing and user
testing were employed to evaluate this project.

5.1 Code Testing

The user interface depends on the dataflow system functioning correctly. These
sections of the application are error prone due to their potentially complex nature.
Accordingly the stores, reducers and actions were unit tested to verify correct
behaviour. This was accomplished using the Jest1 Javascript testing framework.

Tests are written in ES2015 and transpiled prior to execution, the general syntax for
a test can be seen in Listing 5.1. These tests instantiate the data store, dispatch
actions and verify that the store is updated correctly.

Unit tests relate to the following entities across 5 respective test suites:

• Account
• Content
• Module
• Project
• Topic
1https://facebook.github.io/jest/

61

62 CHAPTER 5. VERIFICATION AND VALIDATION

var SAMPLE_MODULE = {
id: "123",
name: "Test Module ",
topics : []

};

describe ('Module State ', function () {

it('RECEIVE_MODULE ', function () {
var mod = require . requireActual ('actions / Module ');
var store = getStore (redux);

store. dispatch (
mod. receiveModule (

SAMPLE_MODULE .id ,
SAMPLE_MODULE

)
);

expect (
store. getState (). module .items[SAMPLE_MODULE .id]. isFetching

). toBeFalsy ();

expect (
store. getState (). module .items[SAMPLE_MODULE .id]. data.name

).toBe(SAMPLE_MODULE .name);
});

}

Listing 5.1: An abridged sample of a test for the module data store. This tests
that a module is stored correctly after being received from the server.

5.2 User testing

To evaluate the both the user interface and the general user experience of the platform
a round of supervised user testing was conducted. This testing focused on the general
usability of the platform, the relevance of recommendations and whether the system
would be useful to them or others in every day life.

5.2. USER TESTING 63

Five self-proclaimed computer-literate users were recruited voluntarily based on their
interest in the platform. These users were aged between 20 and 25 with no specific
background in Software development or design. Before the study was conducted,
ethics approval was obtained from the University of Queensland school of Information
Technology and Electrical Engineering (ITEE) ethics committee. The information
sheet and participant consent form are included in Appendix C.

Users worked through a series of tasks given below. For each task, users were given
an initial explanation of what they should do, but did not receive guidance while
completing the task. If a user was unable to continue they could ask for assistance.

While observations were recorded as users completed the tasks, users could also make
specific comments at any point during the process. These tasks were:

1. Register a new account
2. Create a new project
3. Choose one of the recommended learning modules
4. Work through and complete at least three learning modules
5. Navigate to the current project
6. Search for the “Circle Drawing” module
7. Complete this module

Depending on time contraints users could opt to view the administration and content
editing tools and give their comments. Upon completion of these tasks users were
asked a series of questions (see Appendix B).

5.2.1 Results and Observations

Following testing, observations and user comments were collated and categorised.
Each entry is accompanied by a potential course of action or consequence. All users
who participated indicated they both enjoyed using the platform and that it had
real-world potential.

5.2.1.1 Onboarding Process

The sign-up process is especially important to usability as it is the first impression
users are given of the system and sets the tone for all activities that follow.

64 CHAPTER 5. VERIFICATION AND VALIDATION

Registration

Some users had trouble locating the registration link on the login page, when asked
this was apparently due to the ambiguous wording (“Create” vs. “Register”).

Courses of Action

The wording should be adjusted to include the word “Register” explicitly.

Message Bubble

All users read the initial message bubble in full and asked no questions regarding
the purpose of projects.

Project Page Scrolling

Some users did not realise that they could scroll on the project creation page to view
more content and spent some time idle before experimenting. When questioned about
this, users suggested that the project name input field resemebled an horizontal rule
which indicated the end of the page.

Courses of Action

The width of input field could be reduced to avoid confusion. Alternative input field
designs could also be considered potentially bearing more similarity to traditional
text inputs.

An explicit prompt to scroll down could also be employed, however there is no set
point which users will see the page cut off, due to the variability in screen sizes on
modern computing devices. This makes placement of a scroll prompt challenging.

Previous Experience Nomination

While creating a new project some users did not realise that nominating topics they
had “previous experience” with was optional. When questioned, users felt they still
had to nominate at least one option due to the ambiguous wording (“. . . up to 3. . . ”).

Courses of Action

5.2. USER TESTING 65

The most obvious course of action is to clarify the wording explicitly by stating that
the field is entirely optional. In general less text could be placed in the heading and
more in the descriptive paragraph before the topic clouds. This would increase the
motivation for a user to read this prose, rather than assume they understand how to
use the form.

5.2.1.2 General Interface

Overall Apperance

All users indicated that they enjoyed the overall appearance of the platform,
specifically stating the appeal of the colour scheme, whitespace and typography.

Explanations

Users commenting that the explanations given in text using Message Bubbles (see
Section 4.3.2.1) for forms, input fields and UI elements were very helpful and avoid
confusion when performing potentially complex interactions.

Commenting

Some users immediately opened and read comments in learning modules, while others
began to ignore the comments as “they did not want to make any comments”. All
users indicated that they enjoyed the animation and appearance of the comment
panel, including the conversation style display of the discussion.

When the comment panel was opened, the text field was not immediately focused
causing one user to type without actually entering a comment.

Courses of Action

Increase the distinction between the “Add Comment” prompt and the “Existing
Comments” prompt. When the comment panel is first opened the input field should
automatically be focused to allow a faster commenting process.

Current Project

66 CHAPTER 5. VERIFICATION AND VALIDATION

Users were asked to return to the current project summary during the course of
testing. It was suspected that this would be problematic as the navigation bar is
used fairly infrequently. However, all users located the navigation item successfully.
This is likely due to the familiarity users have with a horizontal navigation bar at
the top of a webpage.

Lesson Completion

One user asked why a lesson must be explicitly finished by clicking a button. Following
this the user attempted to reverse the “Finishing” process by hitting the “Back”
button in the browser.

Courses of Action

Lessons could automatically complete if a user has scrolled a certain distance through
the material. This could potentially alleviate the “undo” issue encountered by the
user, as they would never realise the action had been performed.

Alternatively, an undo function could be implemented to allow a user to reverse the
finish process. This would “unmark” the module from complete to prevent it being
considered by the recommendation system.

5.2.1.3 Recommendations

Freedom

Users indicated that they appreciate the freedom of choice between all four
recommendations and liked that there was no pressure to learn about a particular
topic.

Weak Recommendations

Some users encountered a situation where the system could not find any strong
recommendations. This is due to the limited pool of content created for testing but
could also occur in well populated systems. They were confused by this and felt that
perhaps the system was malfunctioning.

Courses of Action

5.2. USER TESTING 67

Increasing the number of learning modules in the system will help address this
concern. However, when the system is forced to make a “weak” recommendation
the user should be informed. This could be displayed on hover in the “reason for
suggestion” panel, or on the recommendation itself.

5.2.1.4 Content

Length

When asked users felt, in general, that the size of the learning modules provided
was correct and appreciated the “bite-sized” nature of the learning. Some users
suggested that they would prefer a system to have learning modules that were “too
short” rather than “too long”.

Composition

Users indicated that they appreciated the rich media and logical layout of learning
modules. Feeling that they could gain a deep understanding without being
overwhelmed by information.

Chapter 6

Conclusion, Perspectives and
Future Work

This project set out to produce an online learning platform capable of changing
the way self-directed students learn. The platform was shaped by the connectivist
principles and the existing approaches taken by current MOOCs. When commencing
work on the platform, students indicate their interests and previous experience. This
information is then used by the recommendation system to direct users toward
content they may find relevant to themselves and their projects. Each learning
module within the system can be discussed with other students and feedback can be
given at the conclusion of each lesson.

Content can be created using the system’s built-in editor or embedded from external
sources. This gives authors powerful tools to create new content and a simple path to
use existing material. Additionally, aside from the overall arrangement of content, the
learning modules themselves can be parameterised using the information associated
with user. This allows learning modules to connect ideas together without a predfined
ordering.

The core goal of the system was to create a content discovery platform that alleviated
the frustrations students can experience when self-teaching. By unifying the content
delivery platform and automatically recommending content to students, they can
focus purely on understanding content. The system was also designed to implement
each of the connectivist principles (see Section 2.1.1), as these form the basis of most
successful learning experiences.

68

69

From the user testing conducted (see Section 5.2.1) it was observed that users
responded positively to not only the ideas behind the system but to the actual
interface itself. Users indicated that they understood all the key interactions and
fundamental functions of the system, often commenting positively, even on complex
design choices.

Users also stated that they found the recommendations both appropriate and useful.
None of the users who evaluated the platform found any issue with the lack of an
overarching “course” concept and felt that the system had great potential to replace
online tutorials.

Though users had no issue with the recommendation system, both development and
testing showed that there is plenty of room for refinement of the recommendations
(see Section 6.2.6). While users found no issue with the discussion system, comments
suggest that deeper levels of collaboration could further improve the platform.

Currently, the system is usable by prospective students without any supervision.
Students can register an account, set up their interests and their background and
receive recommendations immediately. They can work through learning modules
at their own pace, discussing content with other users and giving feedback to the
platform regarding their experience.

The original goals of the project have been achieved and it has been shown through
testing that this approach to online learning is both effective and has merit for
self-directed learners. In a large-scale deployment of this system users could learn
from a wide array of topics without ever having to intentionally search or plan their
learning. They can focus on the relevant concepts and deepening their understanding.
This project, in its current state, could be used as a substitute for a signfiicant
portion of third-party online tutorials.

Finally, the work and evaluation suggest that the concepts explored here do have
real world applicability and should be explored further and expanded upon.

70 CHAPTER 6. CONCLUSION, PERSPECTIVES AND FUTURE WORK

6.1 Limitations

As both the amount of user data and number of learning modules in the system grows
over time, the time taken to compute recommendations will also increase. Currently
recommendations are computed on demand. During testing, this was not an issue
due to the scale of the dataset; however, in the future this computation could disrupt
the user experience. There are several obvious avenues for improvement:

6.1.1 Caching of Results

Rather than recomputing the recommendations on demand, the system could instead
generate the entire learning graph periodically and store this against each user. While
this would increase the space required to store each user’s information it would allow
constant time lookups of recommendation data.

6.1.2 Worker Queue

In addition to caching recommendation data, the computation of recommendations
could be parallelised via a worker queue. A given users recommendation data is of
suitable scale to be a single “job” for each worker and is free from race conditions.
This would enable simple scalability and parallelisation of the data processing without
interfering with the main web application performance.

6.2 Future Research & Potential Improvements

This project represents a fully featured exploration into the concept of a
recommendation based, dynamic learning platform. While user testing showed very
positive results there are many avenues for potential future work.

6.2.1 Insight Into Student Behaviour

To better create and maintain content within the platform authors require insight into
how students use the system. Recording statistics and displaying them to authors
via a dashboard or visualisation interface could greatly inform content decisions.
Some examples of notable metrics are:

6.2. FUTURE RESEARCH & POTENTIAL IMPROVEMENTS 71

• Average time taken to complete module
• Number of module completions
• Percentage of attempts compared to completions

6.2.2 Collaborative Authoring

Collaboration has proved very effective for the learning experience [38] but research
also suggests that there could be signficant impact on the teaching perspective
[39, 40]. Throughout the online landscape collaboration has proved useful for the
creation of content in general. Prime examples of this include Google Documents1

and Dropbox Paper2.

This extends beyond having multiple editors a document and includes features such
as commenting, task management and real-time cooperation. Additionally this could
extend beyond teacher collaboration and involve students in the content creation
process [39]. Students could provide feeback or suggest edits to content they found
confusing when they first attempted to understand it.

6.2.3 Deep Collaboration

While the existing commenting system provides a useful method for students to
discuss content and ask questions, it is less useful for broad discussion and the
inclusion of rich media. Potential enhancements could include a separate forum
where posts can be linked to particular learning modules and accessed from the main
learning module body.

6.2.4 Assessment and Feedback

While the current metadata stored about students appears to be a sound predictor
for recommendation, it is difficult to infer how well a student understood the concepts
of a learning module. Further insight into a students understanding of, rather than
simply exposure to, a topic could dramatically alter and improve their learning
experience.

1https://www.google.com/docs/about/
2https://www.dropbox.com/paper

72 CHAPTER 6. CONCLUSION, PERSPECTIVES AND FUTURE WORK

This could be achieved through integration of formative assessments, such as multiple
choice quizzes, into learning modules. These could take advantage of the current
parameterisation system to adapt content immediately in response to a user’s answers.
Formative assessment would not only provide more insight into a student’s learning,
but has been shown to enhance the effectiveness of online learning in general [41].

6.2.5 Live Collaboration

It has been found that users learn best when part of a community [38] as discussed by
the connectivist principles (see Section 2.1.1). While the current discussion system
does help convey this impression to students, there are several other ways students
could collaborate during the learning process.

Real-Time

To show students that other users are working through content in real time, a student’s
actions could leave “footprints” on the learning module. This could potentially include
the current mouse position, an indication of how far other students have read or
even an integrated chat system.

Group Work

Additionally, students could work through activities or formative assessment (see
Section 6.2.4) together to further their understanding. These activities could include
domain specific interactive tools, similar to those implemented by golabz3.

6.2.6 Recommendation System

While the recommendation system was rating positively by users there are many
possible metrics that are not currently measured. Each potential metric requires
experimentation and refinement of the combination algorithm. Running experiments
with a large dataset could be used to greatly increase the accuracy and intelligence
of the platform. Some potential metrics for consideration include:

• Time taken to complete a Learning Module
• Number of comments left by a user
3http://www.golabz.eu/

6.2. FUTURE RESEARCH & POTENTIAL IMPROVEMENTS 73

• Formative assessment results (see Section 6.2.4)
• Mouse activity on the page

Additionally future improvements could include more control for content curators
and authors. Collections of learning modules could be defined which have a different
set or weighting of recommendation factors, allowing for dynamic and fine-grained
control of the recommendations given to students.

74 CHAPTER 6. CONCLUSION, PERSPECTIVES AND FUTURE WORK

Appendix A

Recommendation Algorithm
Psuedocode

def nextModules (project , learningModule = null)

Find the "last module " that was completed
if learningModule != null:

lastModule = learningModule
else:

lastModule = project . lastModule

topicLookup = {}
moduleLookup = {}

Create mapping of topic id to topic score
for topicScore in project . topicScores :

topicLookup [topicScore .topic.id] = topicScore .score

learningModules = "All learning modules in the system "

for learningModule in learningModules :
moduleLookup [learningModule .id] = calculateScore (

learningModule ,
topicLookup ,
lastModule

)

75

76 APPENDIX A. RECOMMENDATION ALGORITHM PSUEDOCODE

Sort map by the values in descending order
moduleLookup . sortByValue (). reverse ()

finalRecommendations = []
count = 0

for entry in learningModule :
Do not include a module again
if ! project . learningModules . contains (entry) and

hasPrereqs (project , entry):

finalRecommendations . append (entry)
count ++

if count >= 4:
break

return finalRecommendations

Listing A.1: Pseudocode declaration of the nextModules method which finds the
recommendations to supply to a student.

77

def calculateScore (learningModule , topicScores , previousModule = null):

score = 0
transitions # Number of transitions between previousModule

and learningModule (0 if previousModule is null)

for topic in learningModule . topics :
score += topicScores [topic]

relevanceRating # Number of times this topic has been
nominated as most relevant to this module

score += relevanceRating * 0.5

if previousModule != null:
if previousModule . topics . contains (topic):

score += 2

if previousModule . dependents . contains (learningModule):
score *= 1.1

score += 0.25 * transitions
return score

Listing A.2: Pseudocode declaration of the calculateScore method used to find
the relevance score for a single learning module.

Appendix B

User Testing Question Sheet

Bearing in mind the fact this software platform is a prototype, there are a few
questions we would like answered.

Overall, did you feel you understood how the platform is intended to function?

Did you think the learning modules were too short, too long or approximately the
right length?

Did you personally feel the recommendations made sense based on your
inputs?

Overall, did you enjoy using the platform?

78

79

Did you have any specific complaints, comments, thoughts or suggestions?

Appendix C

User Testing Information and
Consent

80

	

	

School	of	Information	Technology	and	Electrical	Engineering	

HEAD	OF	SCHOOL	
Professor	Paul	Strooper	
	
	

Page	1	of	1	
	

UNDERGRADUATE	STUDENT	
Ben	Follington	
Telephone		0438168458	
Email		benjamin.follington@uqconnect.edu.au	
Internet		www.itee.uq.edu.au	
CRICOS	PROVIDER	NUMBER	00025B	

	
Participant	Informed	Consent	Form	
	
Project	Title:		A	Modular	Approach	to	Software	Education	
	
Your	written	informed	consent	to	participate	in	this	study	is	needed	by	the	researchers.	
Please	read	the	following	statements,	and	sign	if	you	agree	with	them:	
	

The	nature	of	this	project	has	been	explained	to	me	and	I	have	read	and	understood	
the	Participant	Information	Sheet	provided.	
	
I	agree	to	participate	in	the	study	as	described	in	the	Participant	Information	Sheet.		
	
I	understand	that	my	participation	in	this	study	is	voluntary	and	that	I	am	free	to	
withdraw	from	the	study	at	any	time,	without	penalty	and	without	needing	to	
provide	any	reason.	
	
I	understand	that	any	personal	data	collected	throughout	this	project	will	remain	
confidential.	This	data	will	be	collected	and	stored	in	a	deidentified	from	which	will	
not	reveal	my	identity.	
	
I	have	been	informed	that	I	can	contact	the	researcher	if	I	would	like	feedback	on	
this	study.			

	
	
Participant’s	Full	Name:		__________________________________	

Participant’s	Signature:	___________________________________Date:	____/____/______	

	

Researcher	Name/s:		Ben	Follington	
Researcher	Title	/	Position:	Undergraduate	Student	
Researcher	Affiliation:		
	

Supervisor	Name/s:		Jim	Steel	
Supervisor	Title/s	or	Position/s:		Dr	
Supervisor	Affiliation/s:	School	of	ITEE	
	

	

81

School	of	Information	Technology	and	Electrical	Engineering	

HEAD	OF	SCHOOL	
Professor	Paul	Strooper	

Page 1 of 2

UNDERGRADUATE	STUDENT	
Ben	Follington	
Telephone		0438168458	
Email		benjamin.follington@uqconnect.edu.au	
Internet		www.itee.uq.edu.au	

CRICOS	PROVIDER	NUMBER	00025B	

	
	

Participant	Information	Sheet		
	
Project	Title:	A	Modular	Approach	to	Software	Education	
	
Voluntary	participation	
We	seek	your	assistance	in	a	research	project	on	a	new	approach	to	online	education.	Your	
participation	in	this	study	is	completely	voluntary—you	don't	have	to	take	part	if	you	don’t	want	to.	If	
you	do	decide	to	take	part	in	the	project,	you	can	withdraw	from	it	at	any	time	without	giving	a	
reason,	and	without	any	prejudice	or	penalty.	
	
Purpose	of	the	study	
Ben	Follington	is	conducting	this	research	at	The	University	of	Queensland	in	a	private	room.	The	
purpose	of	the	project	is	to	develop	a	new	model	for	online	learning	software.	The	researcher	is	
concerned	with	improving	usability	and	ease	of	learning,	and	not	with	evaluating	the	people	who	take	
part	or	their	ability	to	understand	educational	material.	The	research	is	being	conducted	for	
improvement	and	evaluation	of	the	software	platform.	
	
What	you’ll	be	asked	to	do	or	to	provide	
The	project	will	involve	interacting	with	the	software	platform	on	the	researcher’s	computer	by	
reading	and	completing	learning	activities	for	up	to	50	minutes.	You	are	asked	to	work	through	the	
platform	unassisted	if	possible,	you	will	be	asked	general	questions	regarding	the	usability	and	
intuitiveness	of	the	platform.		The	researcher	will	also	collect	data	on	which	learning	activities	were	
completed	and	in	what	order.	The	data	will	be	collected	on	the	researcher’s	laptop	(for	platform	data)	
and	on	premade	question	sheets	for	feedback.		
	
Any	risks	to	you	
The	potential	risks	of	participation	are	not	beyond	the	risks	of	everyday	living.	There	is	a	slight	chance	
that	participants	may	become	bored	or	self-conscious	using	the	platform	but	participants	are	free	to	
leave	the	study	at	any	time	as	indicated	on	the	consent	form.	
	
Benefits	to	you	
You	will	not	receive	remuneration	for	participation.	Potential	benefits	to	you	are	the	satisfaction	of	
contributing	to	knowledge.	
	
How	your	data	will	be	kept	confidential	
All	information	about	you	and	all	data	collected	from	you	will	be	kept	strictly	confidential	in	
deidentified	form.	All	data	will	be	stored	on	the	researcher’s	personal,	password-protected	laptop.	No	
names,	addresses	or	any	other	identifying	information	will	be	included	in	any	report	on	the	project.		
Publications	and	data	collected	(deidentified	and	de-sensitised)	as	a	result	from	this	study	will	be	made	
available	in	UQ	eSpace,	UQ’s	public	institutional	repository	to	allow	the	dissemination	of	research.	
	
Your	right	to	withdraw	at	any	point	
If	you	do	withdraw	from	the	project	after	it	has	started,	the	materials	that	you	have	completed	to	that	
point	will	be	deleted	and	will	not	be	included	in	the	project.		
	
How	any	concerns	can	be	handled	

82

Page 2 of 2

If	you	feel	distressed	by	the	research	process	either	during	the	data	collection	or	afterwards	then	you	
raise	your	concerns	with	the	research	or	with	any	officer	listed	in	the	“ethical	approval”	paragraph	
below.		
	
Debriefing	at	end	of	study	
At	the	end	of	the	study	you	will	be	asked	whether	you	would	like	to	discuss	any	aspect	of	it.	We	will	be	
happy	to	discuss	any	concerns	or	issues	at	this	time.	You	will	also	be	invited	to	offer	feedback	to	the	
research	team	members,	either	verbally	or	in	writing,	at	the	end	of	the	study	and	you	are	welcome	to	
offer	feedback	at	any	time	later.		
	
How	you	can	find	out	about	the	overall	results	of	the	research	
You	will	be	asked	if	you	would	like	a	copy	of	the	summary	of	research	findings	from	the	phase	of	the	
project	in	which	you	participated.	If	you	wish	to	receive	this	information,	we	will	ask	you	for	your	
contact	information	so	that	we	can	send	this	information	to	you.	This	information	will	be	kept	on	a	
project	contact	list	database	that	can	be	accessed	only	by	team	members.	
	
Ethical	approval	
This	study	adheres	to	the	Guidelines	of	the	ethical	review	process	of	The	University	of	Queensland	and	
the	National	Statement	on	Ethical	Conduct	in	Human	Research.	Whilst	you	are	free	to	discuss	your	
participation	in	this	study	with	the	researcher	(contactable	on	0438168458	or	via	email	at	
benjamin.follington@uqconnect.edu.au),	if	you	would	like	to	speak	to	an	officer	of	the	University	not	
involved	in	the	study,	you	may	contact	the	ITEE	Ethics	Officer	via	email	at:	ethics@itee.uq.edu.au.	You	
are	free	to	discuss	your	participation	in	this	study	with	Dr.	Jim	Steel.		

	

Researcher	Name/s:		Ben	Follington	
Researcher	Title	/	Position:		Undergraduate	Student	
Researcher	Affiliation:		
	

Supervisor	Name/s:		Jim	Steel	
Supervisor	Title/s	or	Position/s:		Dr	
Supervisor	Affiliation/s:		School	of	ITEE	
	

83

Bibliography

[1] S. L. Silver and L. T. Nickel, “Are online tutorials effective? A comparison of
online and classroom library instruction methods,” Research Strategies, vol. 20, no.
4, pp. 389–396, Jan. 2005.

[2] J. Mackness, S. F. J. Mak, and R. Williams, “The Ideals and Reality of
Participating in a MOOC,” Proceedings of the seventh International Conference
on Networked Learning 2010, pp. 266–274, 2010.

[3] M. Kathleen Dunaway, “Connectivism: Learning theory and pedagogical practice
for networked information landscapes,” Reference Services Review, vol. 39, no. 4, pp.
675–685, Nov. 2011.

[4] G. Siemens, “Connectivism: A learning theory for the digital age.” ELearnSpace,
2004 [Online]. Available: http://www. elearnspace.org/Articles/connectivism.htm.
[Accessed: 22-Mar-2015]

[5] R. McGreal, Online Education Using Learning Objects. RoutledgeFarmer, 2004.

[6] S. Downes, “Learning objects: Resources for distance education worldwide,” The
International Review of Research in Open and Distributed Learning, vol. 2, no. 1,
2001.

[7] D. M. Billings, “Using Reusable Learning Objects,” The Journal of Continuing
Education in Nursing, vol. 41, no. 2, pp. 54–55, Feb. 2010.

[8] R. McGreal, “A typology of learning object repositories,” in Handbook on
information technologies for education and training, Springer, 2008, pp. 5–28.

84

http://www. elearnspace.org/Articles/connectivism.htm

[9] R. K. Asim Ansari Skander Essegaier, “Internet Recommendation Systems,”
Journal of Marketing Research, vol. 37, no. 3, pp. 363–375, 2000.

[10] Xavier Amatriain, “Kdd 2014 Tutorial - the recommender problem
revisited.” 2014 [Online]. Available: http://www.slideshare.net/xamat/
kdd-2014-tutorial-the-recommender-problem-revisited

[11] G. Dror, N. Koenigstein, and Y. Koren, “Web-Scale Media Recommendation
Systems,” Proceedings of the IEEE, vol. 100, no. 9, pp. 2722–2736, Sep. 2012.

[12] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet, U. Gargi, S. Gupta, Y.
He, M. Lambert, B. Livingston, and others, “The YouTube video recommendation
system,” in Proceedings of the fourth ACM conference on Recommender systems,
2010, pp. 293–296.

[13] S. S. Skiena, “Graph Traversal,” in The Algorithm Design Manual, London:
Springer London, 2008.

[14] S. R. Hiltz and M. Turoff, “Education goes digital: The evolution of online
learning and the revolution in higher education,” Communications of the ACM, vol.
48, no. 10, p. 59, Oct. 2005.

[15] M. Courtney and S. Wilhoite-Mathews, “From Distance Education to Online
Learning: Practical Approaches to Information Literacy Instruction and Collaborative
Learning in Online Environments,” Journal of Library Administration, vol. 55, no.
4, pp. 261–277, May 2015.

[16] N. Case, “Sight & Light: How to create 2D visibility/shadow effects for your
game.” 2014 [Online]. Available: http://ncase.me/sight-and-light/. [Accessed:
22-Mar-2015]

[17] R. Whittaker, “2D Particle Engines.” 2014 [Online]. Available: http://rbwhitaker.
wikidot.com/2d-particle-engine-1. [Accessed: 22-Mar-2015]

[18] A. McAuley, B. Stewart, G. Siemens, and D. Cormier, “The MOOC model for
digital practice,” 2010.

[19] “Courses edX.” edX, 2015 [Online]. Available: https://www.edx.org/course.
[Accessed: 22-Mar-2015]

85

http://www.slideshare.net/xamat/kdd-2014-tutorial-the-recommender-problem-revisited
http://www.slideshare.net/xamat/kdd-2014-tutorial-the-recommender-problem-revisited
http://ncase.me/sight-and-light/
http://rbwhitaker.wikidot.com/2d-particle-engine-1
http://rbwhitaker.wikidot.com/2d-particle-engine-1
https://www.edx.org/course

[20] “Khan Academy: Stories.” Khan Academy, 2015 [Online]. Available: https:
//www.khanacademy.org/stories. [Accessed: 24-Mar-2015]

[21] “Treehouse: Library.” Treehouse, 2015 [Online]. Available: http://teamtreehouse.
com/library. [Accessed: 24-Mar-2015]

[22] N. Leavitt, “Will NoSQL databases live up to their promise?” Computer, vol.
43, no. 2, pp. 12–14, 2010.

[23] “Sharding.” MongoDB, 2015 [Online]. Available: https://docs.mongodb.org/
manual/sharding/

[24] S. Günther, “Multi-dsl applications with ruby,” IEEE software, no. 5, pp. 25–30,
2010.

[25] D. Spinellis, “The importance of being declarative,” IEEE software, no. 1, pp.
90–91, 2013.

[26] “The Elegant Ruby Web Framework.” Padrino, 2015 [Online]. Available:
http://www.padrinorb.com/. [Accessed: 11-Jan-2015]

[27] “Minimizing browser reflow.” Google, 2015.

[28] “A Javascript Library for Building User Interfaces React.” Facebook, 2015
[Online]. Available: https://facebook.github.io/react/. [Accessed: 11-Jan-2015]

[29] “Flux Application Architecture for Building User Interfaces.” Facebook, 2015
[Online]. Available: https://facebook.github.io/flux/. [Accessed: 11-Jan-2015]

[30] “MongoDB Data Model Design.” MongoDB, 2015 [Online]. Available: https:
//docs.mongodb.org/manual/core/data-model-design/. [Accessed: 11-Jan-2015]

[31] H. Park and H.-D. Song, “Make E-Learning Effortless! Impact of a Redesigned
User Interface on Usability through the Application of an Affordance Design
Approach,” Journal of Educational Technology & Society, vol. 18, no. 3, pp.
185–196, 2015.

86

https://www.khanacademy.org/stories
https://www.khanacademy.org/stories
http://teamtreehouse.com/library
http://teamtreehouse.com/library
https://docs.mongodb.org/manual/sharding/
https://docs.mongodb.org/manual/sharding/
http://www.padrinorb.com/
https://facebook.github.io/react/
https://facebook.github.io/flux/
https://docs.mongodb.org/manual/core/data-model-design/
https://docs.mongodb.org/manual/core/data-model-design/

[32] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in
Proceedings of the SIGCHI conference on Human Factors in Computing Systems,
1994, pp. 152–158.

[33] C. Foley, E. de Leaster, S. van der Meer, and B. Downes, “Instant Messaging
as a Platform for the Realisation of a true Ubiquitous Computing Environment,”
Innovation and the Knowledge Economy Issues, Applications, Case Studies, Part,
vol. 2, pp. 1051–1060, 2005.

[34] A. Marcus and E. W. Gould, “Crosscurrents: Cultural dimensions and global
Web user-interface design,” interactions, vol. 7, no. 4, pp. 32–46, 2000.

[35] S. J. Boyce, “Spoken natural language dialogue systems: User interface issues
for the future,” in Human factors and voice interactive systems, Springer, 1999, pp.
37–61.

[36] G. Bidjovski, “Interpretation of the Selected Text Fonts with Their Typographic
Features from the Web Sites of the Computers of the Users,” International Journal
of Image, Graphics and Signal Processing (IJIGSP), vol. 5, no. 12, p. 71, 2013.

[37] K. E. Sulak, What makes a font persuasive?: An eye-tracking study of perception
in American and Chinese assessment of fonts. 2012.

[38] R. M. Felder and R. Brent, “Effective strategies for cooperative learning,” Journal
of Cooperation & Collaboration in College Teaching, vol. 10, no. 2, pp. 69–75, 2001.

[39] S. Govaerts, Y. Cao, N. Faltin, F. Cherradi, and D. Gillet, “Tutoring Teachers -
Building an Online Tutoring Platform for the Teacher Community,” in Immersive
Education, vol. 486, M. Ebner, K. Erenli, R. Malaka, J. Pirker, and A. E. Walsh,
Eds. Cham: Springer International Publishing, 2015, pp. 39–51.

[40] M. J. Rodríguez-Triana, A. Holzer, A. Vozniuk, and D. Gillet, “Orchestrating
Inquiry-Based Learning Spaces: An Analysis of Teacher Needs,” in Advances in
Web-Based Learning–ICWL 2015, Springer, 2015, pp. 131–142.

[41] K. H. Wang, T. H. Wang, W.-L. Wang, and S. C. Huang, “Learning styles
and formative assessment strategy: Enhancing student achievement in Web-based
learning,” Journal of Computer Assisted Learning, vol. 22, no. 3, pp. 207–217, 2006.

87

	Introduction
	Project Purpose

	Related Work
	Digital Education Theory
	Connectivism
	Learning Objects
	Reusable Learning Objects

	Recommendation Systems
	Content Filtering Recommendation
	Collaborative Filtering Recommendation
	Hybrid Recommendation

	Graph Theory
	Existing Approaches to Digital Learning
	University Approaches
	Tutorials
	Massively Open Online Courses

	Existing Approaches to Modular Learning
	Khan Academy
	Treehouse

	Project Design Overview
	Key Features
	System Overview

	System Implementation
	Technology Stack
	Back-end
	Database
	Application

	Front-end
	React
	Flux
	SASS
	Build System

	Domain Model of System
	Account
	Project
	Metadata

	Topic
	Learning Module
	Comment

	Content Block
	Feedback Data

	Interface
	User Interface Flow and Functionality
	Tasks
	Intended User Interface Usage
	Login Form
	Registration Form
	User Dashboard
	Project Creation
	Project Summary
	Content Consumption
	Content Editor

	Design Patterns
	Message Bubble
	Input Fields
	Topic Cloud
	Inline Commenting
	Avatar and User Identification
	Content Types
	Recommendations
	Parameterisation Indicator
	External Content

	Implementation
	Flux Implementation
	Content Editor Implementation

	Content writing
	Recommendation System
	Content Driven Aspects
	Collaboration Driven Aspects
	Combination and Interpretation
	Algorithm

	Parameterisation Functionality

	Verification and Validation
	Code Testing
	User testing
	Results and Observations
	Onboarding Process
	General Interface
	Recommendations
	Content

	Conclusion, Perspectives and Future Work
	Limitations
	Caching of Results
	Worker Queue

	Future Research & Potential Improvements
	Insight Into Student Behaviour
	Collaborative Authoring
	Deep Collaboration
	Assessment and Feedback
	Live Collaboration
	Recommendation System
	Appendices
	Recommendation Algorithm Psuedocode
	User Testing Question Sheet
	User Testing Information and Consent
	Bibliography

